Чтение онлайн

ЖАНРЫ

Схемотехника аналоговых электронных устройств

Красько А. С.

Шрифт:

Данный способ столь же эффективно может быть использован при определении чувствительности более высоких порядков для всевозможных характеристик электронных схем. Реализация полученных таким образом алгоритмов расчета чувствительности сводится к вычислению и перебору соответствующих алгебраических дополнений, что хорошо сочетается с нахождением других малосигнальных характеристик электронных схем.

8.5. Машинные методы анализа АЭУ

В подразделе 2.3 приведена основная идея обобщенного метода узловых потенциалов, на основе которого были получены большинство соотношений для эскизного расчета усилительных каскадов. Однако наряду с несомненными достоинствами данного метода (простота программирования, малая размерность получаемой матрицы проводимости Y, n*n, где n- количество узлов схемы без опорного), данный метод имеет ряд существенных недостатков.

В первую очередь следует отметить невозможность представления в виде проводимости некоторых идеальных моделей электронных схем (короткозамкнутых ветвей, источников напряжения, зависимых источников, управляемых током и т.д.). Кроме того, представление индуктивности проводимостью неудобно при временном анализе схем, что связано с преобразованием Лапласа (оператор Лапласа p должен быть в числителе для того, чтобы система алгебраических уравнений и полученная в результате преобразования система дифференциальных уравнений имела одинаковые коэффициенты).

В настоящее время наибольшее распространение получили топологические методы формирования системы уравнений электрической цепи, наиболее общим из которых является табличный [4].

В этом методе все уравнения, описывающие цепь, включаются в общую систему уравнений, содержащую уравнения Кирхгофа для токов, напряжений и компонентные уравнения.

Уравнения Кирхгофа для токов можно представить в виде

AIв = 0,

где — матрица инценденции [4], описывающая топологию цепи, Iв — вектор тока ветвей.

Уравнения Кирхгофа для напряжений имеют вид

Vв – AtVп = 0,

где Vв и Vп — соответственно, вектора напряжений ветвей и узловых потенциалов, At — транспонированная матрица инценденции A.

В общем случае уравнения, описывающие элементы цепи, можно представить в следующей форме:

YвBв + ZвIв = Wв,

где Yв и Zв — соответственно, квазидиагональные матрицы проводимости и сопротивления ветвей, Wв — вектор, куда входят независимые источники напряжения и тока, а также начальные напряжения и токи на конденсаторах и индуктивностях.

 Запишем приведенные уравнения в следующей последовательности:

Vв – AtVп = 0;

YвBв + ZвIв = Wв;

AIв = 0;

и представим в матричной форме

или в общем виде

TX=W.

 Табличный метод имеет главным образом теоретическое значение, поскольку наряду с основным достоинством, выражающимся в том, что возможно нахождение всех токов и напряжений ветвей и узловых потенциалов, имеет ряд существенных недостатков. В первую очередь следует отметить избыточность метода, приводящую к большой размерности матрицы T. Далее следует отметить, что многие идеальные управляемые источники приводят к появлению лишних переменных. Например, входной ток управляемых напряжением источников тока и напряжения, а также входное напряжение управляемых током источников тока и напряжения равны нулю, но в данном методе они рассматриваются как переменные.

 В практическом плане чаще всего используется модификация табличного метода — модифицированный узловой метод с проверкой [4].

 Идея данного метода заключается в разделении элементов на группы; одна

группа сформирована из элементов, которые описываются помощью проводимостей, для элементов второй группы такое описание невозможно. Поскольку через токи ветвей первой группы можно выразить напряжения ветвей, а напряжения ветвей через узловые потенциалы, то можно исключить из табличных уравнений все напряжения ветвей, а для элементов первой группы еще и токи ветвей. При введении дополнительных уравнений для токов в ветвях с элементами второй группы производится проверка на наличие заранее известных (нулевых) переменных. В результате такого преобразования получим уравнения модифицированного узлового метода с проверкой

или в общем виде

TmX=W,

где n — размерность матрицы проводимости Yn1 элементов первой группы (n — число узлов схемы без нулевого); m — число дополнительных уравнений для элементов второй группы; Jn — вектор независимых источников тока; I2 — вектор токов ветвей элементов второй группы; W2 — вектор, куда входят независимые источники напряжения, а также начальные напряжения и токи на конденсаторах и индуктивностях, представленных элементами второй группы.

Для упрощения программирования обычно представляют матрицу коэффициентов системы уравнений модифицированного узлового метода Tm в виде суммы двух матриц размерностью (n+m)*(n+m)

Tm = G + pC.

В матрицу G вносят все активные проводимости и коэффициенты, соответствующие частотно-независимым элементам, а в матрицу C — все частотнозависимые элементы, причем индуктивности обычно представляют элементом второй группы, т.е. сопротивлением. Далее находят решение данной системы уравнений, используя алгоритмы Гаусса-Жордана либо L/U-разложения [4].

При частотном анализе электронных схем оператор p заменяется на , организуется цикл по частоте, внутри которого для каждой частотной точки формируется система уравнений, которая решается относительно интересующих напряжений и токов.

 При временном анализе линейных электронных схем возможно непосредственно использовать модифицированную узловую форму уравнений

(G + pC)X = W.

После перехода во временную область получим

Gx + Cx' = W,

или

Cx' = W – Gx.

Решение полученной системы дифференциальных уравнений находится путем численного интегрирования. Одними из эффективных методов численного интегрирования являются методы, опирающиеся на линейные многошаговые формулы [4], к простейшим из которых относятся формулы Эйлера (прямая и обратная) и формула трапеций.

Разбив временной интервал [0,T] на конечное число отрезков h и положив tn+1=tn+h, для каждого момента времени tn можно найти приближение xn к истинному решению x(tn) путем применения линейных многошаговых формул:

xn+1 = xn + hx'n (прямая формула Эйлера);

xn+1 = xn + hx'n+1 (обратная формула Эйлера);

xn+1 = xn + (h/2)(x'n + x'n+1) (формула трапеций).

Поделиться с друзьями: