Термодинамика реальных процессов
Шрифт:
I = dE/dt (108)
Потоки J и I , характеризующие конкретные условия переноса, широко применяются на практике: первый поток наиболее известен в теории теплопроводности, второй - в электротехнике, где именуется силой тока.
Термодинамическая сила, или просто сила, ответственная за перенос вещества, пропорциональна разности интенсиалов (об этом уже говорилось). Применительно к силе тоже предусмотрены два характерных варианта, отражающих конкретные условия переноса. В первом случае сила обозначается через X , она представляет собой напор интенсиала ?? , определяемый формулой (96). Имеем
Х = - ?Р = - (Рс – Рп) (109)
Вторая конкретная сила,
Y = - dP/dx (110)
Знак минус в правых частях равенств (109) и (110) свидетельствует о том, что вещество распространяется от большего значения интенсиала к меньшему, при этом разности ?Р и dP оказываются отрицательными. Но потоки веществ J и I , а следовательно, и силы X и ? должны быть положительными. Поэтому знак минус компенсирует отрицательные значения разностей ?? и dP .
Заметим, что термин «термодинамическая сила», или «сила», является общепринятым в термодинамике необратимых процессов. Однако он ничего общего не имеет с истинным понятием силы. Именно поэтому упомянутый термин был заключен нами в кавычки. В дальнейшем кавычки опускаются, но нужно не забывать об имеющейся в этом термине условности. Теперь мы располагаем уже тремя сходными по названию понятиями: сила, специфическая сила (интенсиал) и термодинамическая сила (разность или градиент интенсиала). Только первое понятие является силой в истинном смысле этого слова, два других понятия - это условные силы, они связаны с истинной силой соотношениями (94) и (97). Еще более условный смысл имеет понятие сила тока в электротехнике. Отметим также, что в принятых равенствах (107)-(110) по традиции в качестве опорных, эталонных использованы следующие пространственные и временные характеристики: площадь F , протяженность х и время t [ТРП, стр.141-142].
4. Четыре частных уравнения переноса.
Воспользуемся теперь конкретными потоками J и I и силами X и ? и преобразуем обобщенное уравнение (100) к виду, удобному для практического использования. При этом всего получаются четыре частных варианта дифференциальных уравнений переноса, ибо каждый из потоков J и I может сочетаться с каждой из сил X и ? .
В первом варианте сочетаются поток J и сила X . В простейших условиях двух степеней свободы (n = 2) из выражений (100), (107) и (109), заменив разность dP на ?Р , получим
J1 = ?11X1 + ?12X2 (111)
J2 = ?21X1 + ?22X2
где
?11 = - KP11(1/(dFdt)) ; ?22 = - KP22(1/(dFdt)) (112)
?12 = - KP12(1/(dFdt)) ; ?21 = - KP21(1/(dFdt)) (113)
В гипотетических частных условиях, когда n = 1, имеем
J = ?X (114)
где
? = - К(1/(dFdt)) (115)
В уравнениях переноса (111) и (114) величина ? представляет собой частную проводимость, которая играет роль, например, коэффициента отдачи вещества на контрольной поверхности системы. В частном случае из равенства (114) получается известное уравнение закона теплообмена на поверхности тела Ньютона (см. параграф 2 гл. XX).
Во втором варианте сочетаются поток I и сила X . Ограничиваясь двумя степенями свободы (n = 2), из выражений (100), (108) и (109) находим
I1 = ?11X1 + ?12X2 (116)
I2 = ?21X1 + ?22X2
где
?11 = - KP11(1/dt) ; ?22 = - KP22(1/dt) (117)
?12 = - KP12(1/dt) ; ?21 = - KP21(1/dt) (118)
При n = 1 получаем
I = ?X (119)
где
? = K(1/dt) (120)
В уравнениях переноса (116) и (119) частная проводимость ? есть, например, коэффициент отдачи вещества
на контрольной поверхности системы. В отличие от коэффициента ? , относящегося к единице площади поверхности, величина ? относится к поверхности в целом.В третьем варианте сочетание потока J и силы ? при двух степенях свободы (n = 2) позволяет получить из выражений (100), (107) и (110) следующее частное дифференциальное уравнение переноса:
J1 = L11Y1 + L12Y2 (121)
J2 = L21Y1 + L22Y2
где
L11 = - KP11(dx/(dFdt)) ; L22 = - KP22(dx/(dFdt)) (122)
L12 = - KP12(dx/(dFdt)) ; L21 = - KP21(dx/(dFdt)) (123)
При n = 1 имеем
J = LY (124)
где
L = - K (dx/(dFdt)) (125)
В уравнениях (121) и (124) коэффициент L представляет собой удельную проводимость системы по отношению к веществу. В частных случаях выражение (124) дает известные уравнения законов теплопроводности Фурье, электропроводности Ома, диффузии Фика и фильтрации Дарси [17, 18, 21].
Наконец, в четвертом частном варианте сочетаются поток I и сила ? . Для двух степеней свободы (n = 2) из равенств (100), (108) и (110) находим
I1 = M11Y1 + M12Y2 (126)
I2 = M21Y1 + M22Y2
где
M11 = - KP11(dx/dt) ; M22 = - KP22(dx/dt) (127)
M12 = - KP12(dx/dt) ; M21 = - KP21(dx/dt) (128)
При n = 1 имеем
I = MY (129)
где
M = - K (dx/dt) (130)
Частная проводимость ? отличается от L тем, что относится не к единице площади сечения системы, как L , а ко всему сечению. Именно в такой форме обычно используется закон электропроводности Ома.
Перечисленные частные дифференциальные уравнения переноса позволяют охватить самые характерные и наиболее часто встречающиеся на практике условия распространения вещества [ТРП, стр.143-145].
5. Пятое начало ОТ, или закон переноса.
Из дифференциальных уравнений переноса - обобщенного (100) и частных (111), (116), (121) и (126) - следует, что в процессе распространения вещества наблюдается взаимное влияние всех n потоков и термодинамических сил. Даже при наличии только одной какой-либо силы ни один из потоков не обращается в нуль. Отсюда можно сделать интереснейший вывод о том, что всеобщая связь присуща не только явлениям состояния, но и явлениям переноса. Выведенные уравнения позволяют детально разобраться в характере и причинах имеющейся связи.
В случае явлений состояния всеобщая связь сводится к тому, что происходит взаимное влияние всех n веществ, находящихся в системе. Это влияние с качественной и количественной стороны определяется третьим и четвертым началами ОТ, оно прежде всего сказывается на величине интенсиала, характеризующего активность, напряженность, интенсивность поведения системы, причем интенсиал определяется уравнением состояния.
В случае явлений переноса речь идет о том, что каждое данное вещество распространяется под действием сопряженной с ним термодинамической силы (разности или градиента интенсиала). Но одновременно наблюдается также перенос всех остальных веществ из числа n , на которые данная термодинамическая сила непосредственно не влияет. Конечно, имеются в виду условия, когда все прочие термодинамические силы, кроме данной, равны нулю. Это значит, что остальные вещества увлекаются данным и в этом может быть повинно только универсальное взаимодействие, присущее всем веществам без исключения. Следовательно, не только система, но и объект переноса обладает свойствами ансамбля, в котором связанны между собой разнородные вещества.