Чтение онлайн

ЖАНРЫ

Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С

Пак Дэниэл Дж.

Шрифт:

6.5. Методики испытаний на наличие помех

Даже если вы добросовестно применяете методы, описанные в предыдущих разделах, у вас нет никакой гарантии, что ваш прибор не будет восприимчив к помехам или не будет их излучать. До передачи прибора на полномасштабные испытания, было бы полезно проверить характеристики помех, с помощью некоторых дешевых методов тестирования. В следующих двух разделах мы обсуждаем такие методы проверки микроконтроллерной системы на создание помех и чувствительность к помехам. Эти методы созданы Gerry O. (он хочет остаться анонимным), который в течение более чем 35 лет разрабатывал электронные приборы, а теперь является президентом и главный разработчиком фирмы, занимающейся разработкой и изготовлением международных электронных проектов.

6.5.1.

Обнаружение помех

Чтобы определять если прототип, встроенная система управления выделяет помех, следующая методика может использоваться: «Обычно я (Gerry O.) настраиваю телевизор на второй канал (не подключая антенну) чтобы видеть, присутствуют ли излучаемое высокочастотные помехи, передаваемые через излучение (RFI). Я настраиваюсь также на полосу AM радио (автомобильного приемника). AM радио обычно самый лучший тест для «помех» от источника питания. Телевизор самое лучшее для высокочастотного излучения. Обратите внимание, что звук телевизора обычно не реагирует на ВЧ излучение, поскольку передача звука идет на длинных волнах (диапазон FM) , а видеосигнал на коротких (диапазон AM). Так что, ищите помехи в изображении. Я где-то читал что, если вблизи проходит торнадо, изображение на втором канале исчезает из-за перегрузки автоматической схемы регулировки уровня (AGC). Некоторые компьютерные программы также наводят помехи на втором канале, если телевизор расположен слишком близко к компьютеру. 

6.5.2. Испытание на чувствительность к помехам

Дешевый метод для испытания системы микроконтроллера на чувствительность к помехам состоит в том, чтобы использовать мощное размагничивающее устройство видеозаписи как показано на рис. 6.6. Цель испытания состояла в том, чтобы видеть, могло бы сильное переменное магнитное поле создавать сигналы в микропроцессоре или периферийных устройствах. Такие сигналы могли бы привести к сбоям в работе. Хотя таким способом невозможно смоделировать молнию или электромагнитные импульсы, это, тем не менее, хороший быстрый тест на чувствительность к помехам. Gerry указал, что несколько лет назад разряд молнии произошел вблизи от окна его офиса. Его компьютер был выключен, но все же несколько файлов в нем были уничтожены. Молния повредила также схему драйвера принтера на системной плате ПК ( на канале LPT1).

Рис. 6.6. Дешевый метод для обнаружения чувствительности к помехам и в схеме

Размагничивающее устройство видеозаписи обеспечивает дешевый источник для сильных переменных магнитных полей, чтобы проверить чувствительности микропроцессора к помехам

Доктор Джерри Хаманн (университет штата Вайоминг) предлагает другой метод испытания на чувствительность к помехам. Он предлагает поводить рукой над испытуемым прибором. Известно, что ваше тело коварный источник статического электричества. Когда вы поднесете руку вплотную к схеме, она должна продолжать стабильно работать.

Если при этом происходят изменения в работе схемы, вы должны проверить, правильно ли подключены свободные выводы микросхем.

Напомним, что эти проверки не могут заменить проверку на помехи с помощью комплекта испытательной аппаратуры. Однако, они обеспечивают быструю проверку прибора на электромагнитную совместимость.

6.5.3. Испытания на электромагнитную совместимость

До производства, разработанной встроенной системы на базе контроллера, изделие должно быть проверено на ЭМС. Правила и рекомендации по управлению этих испытаний разрабатываются Федеральной комиссией по связи (FCC) в Соединенных Штатах и в Европейском Экономическом Сообществе (ЕЭС). Кроме того, Управление продовольствия и медицинских препаратов (FDA) разрабатывает стандарты для медицинских устройств. Мы не собираемся подробно рассматривать здесь эти испытания. Правила постоянно совершенствуются (что совершенно правильно), и любая приведенная информация, быстро устарела бы. Вместо этого мы приводим краткий обзор имеющихся правил в ссылках на использованную литературу, которые приводятся

в разделе «Что еще почитать» в конце главы, чтобы получить наиболее современную информацию.

Правила FCC и части 15 Правил для устройств высокой частоты формулируют правительственные правила и рекомендации для радио устройств (РФ), способных к излучению энергии в диапазоне от 9 кГц до 200 ГГц. FCC и часть 15 в настоящее время устанавливают три процедуры для проверки приборов на соответствие требованиям ЭМС:

• Проверка: изготовитель изделия регистрирует протокол испытаний на соответствие требованиям ЭМС.

• Сертификация: Комиссия FCC дает обзор применений ЭМС.

• Декларация соответствия: эти испытания выполняет лаборатория, уполномоченная Национальным Институтом Стандартов и Технологии (NIST).

Например, для ряда изготовителей испытания по ЭМС выполняет лаборатория Underwriters Laboratory (UL).

Международные стандарты, касающиеся ЭМС, разработаны прежде всего Международной Электротехнической Комиссией (МЭК, IEC). Стандарты, разработанные МЭК могут быть разбиты на следующие группы:

• Разряды электростатического электричества (публикация IEC 61000–4–2)

• Излучение электромагнитных полей высокой частоты (публикация IEC 610004–3)

• Электрические быстрые переходные процессы/пакет (публикация МЭК: IEC 61000–4–4)

• Электромагнитные импульсы (surges) (публикация МЭК: IEC 61000–4–5)

• Устойчивость к помехам, передаваемым за счет проводимости (публикация IEC 61000–4–6)

• Устойчивость к магнитным полям (публикация IEC 61000–4–9)

• Посадки напряжения, кратковременные прерывания и изменения напряжения (публикация IEC 61000–4–11)

Наиболее важный урок, следующий из нашего обсуждения, состоит в том, что требования к ЭМС должны быть частью технических требований на изделие, сформулированных до начала цикла проектирования.

В следующем разделе мы исследуем, как управлять энергопотреблением во встроенных системах.

6.6. Управление энергопотреблением 

Часто микроконтроллерные системы представляют собой переносные или дистанционно-управляемые модули. Обеспечение подходящего источника напряжения для системы становится главной задачей — задачей, которая может быть обоюдоострым мечом. С одной стороны, должна быть разработана подходящая система питания, чтобы обеспечить соответствующее напряжение и текущие требования для системы в течение приемлемого временного интервала. С другой стороны проектировщик должен уменьшить потребляемую мощность встроенной системы контроллера. Кроме того, система должна иметь защиту от понижения питающего напряжения. Вся эта совокупность требований рассматривается в данном разделе. Мы ограничиваем наше обсуждение системами с аккумуляторным питанием. 

6.6.1. Параметры потребляемой мощности для микроконтроллера 68HC12

Чтобы разработать систему питания для встроенной микроконтроллерной системы, необходимо определить несколько параметров проекта:

• Напряжения питания, необходимые для встроенного контроллера, периферийных устройств, и всех компонентов системы;

• Токи утечки для каждого компонента системы;

• Ожидаемая период работы системы без замены или перезарядки батареи; 

• Температура среды.

После определения параметры, можно приступить к проектированию подходящего батарейного источника питания. Для определения этих значений необходимо тщательно исследовать технические данные для каждого компонента системы. Все вычисления должны проводиться для наихудшего случая — другими словами, при наиболее критичных значениях токах утечки и рабочей температуры.

6.6.2. Типы батарей

После определения параметров системы можно начать выбор батареи. На рис. 6.7 и 6.8 представлен краткий обзор характеристик распространенных типов батарей. В обзоре приведены только типы батарей, напряжения и емкости. Полный обзор характеристик приводится в каталоге источников питания для электронных устройств. Такие каталоги обеспечивают хороший обзор для всего разнообразия батарей. Но сначала рассмотрим характеристики четырех основных типов батарей:

Поделиться с друзьями: