Чтение онлайн

ЖАНРЫ

Занимательно о космологии
Шрифт:

К сожалению, нарисовать или представить наглядно трехмерное пространство, подчиняющееся аксиомам геометрии Лобачевского, невозможно. У автора не хватает фантазии даже на аналогии. А отсутствие таковых в специальной литературе не позволяет прибегнуть к заимствованию. Придется воспользоваться единственным выходом — логикой…

Двухмерное пространство нулевой кривизны — плоскость. Та же нулевая величина кривизны определяет и эвклидово пространство, отличающееся от плоскости лишь наличием еще одного измерения.

Двухмерное пространство отрицательной кривизны — плоскость Лобачевского. Та же отрицательная величина кривизны определяет и неэвклидово пространство Лобачевского, отличающееся от плоскости Лобачевского лишь наличием еще одного измерения.

Представить себе его наглядно — трудно, но математически оно описывается безукоризненно. Кривизну пространства

можно измерить опытным путем. И тогда в пространстве отрицательной кривизны сумма углов треугольника будет зависеть от величины его сторон и составлять меньше 180°. Через точку, лежащую вне «прямой», можно будет провести не одну, а целый пучок «прямых», не пересекающихся с данной, и так далее и тому подобное. Все так, как предсказывал еще в 1826 году Николай Иванович Лобачевский на заседании физико-математического отделения Казанского университета.

Мемуар Бельтрами возродил интерес к неэвклидовой геометрии. Появляется множество работ, у псевдосфер обнаруживаются некоторые особенности, которыми плоскость Лобачевского не обладает. Математики предлагают другие модели и другие интерпретации не только плоскости, но и пространства Лобачевского. Об одной из них, забегая по времени вперед, автор собирается поведать.

Представим себе поезд, мчащийся по рельсам. Вдоль состава, в направлении движения в вагон-ресторан, идет пассажир. Чему равна его скорость относительно пролетающих за окнами полустанков? Все просто — сумме скоростей поезда и его движения вдоль вагона.

На обратном пути его движение уже не столь прямолинейно. Пошатываясь, он двигается под разными углами к направлению движения поезда. Теперь его скорость относительно тех же полустанков равна разности скоростей. Но не просто от скорости поезда в 120 км/час нужно отнять 2 км/час, которые он преодолевает, добираясь до своего купе. Нет, полная скорость определится как векторная разность. А сложение и вычитание векторов производится по правилу параллелограмма.

Мы вспоминаем о Пифагоре и приходим к мысли, что законы сложения скоростей подчиняются правилам эвклидовой геометрии. Или, как принято говорить среди специалистов, геометрия пространства скоростей — эвклидова. Впрочем, такое заявление — спекуляция чистой воды. Решить, какой геометрией является геометрия пространства скоростей, должен опыт. И вот опыт-то и обнаружил в пространстве скоростей первое противоречие со свойствами эвклидовой геометрии. Случилось это так.

В 1877 году американские физики Майкельсон и Морли поставили эксперимент, который обещал просветить физику в отношении противоречивых свойств мирового эфира. Автору пока не хотелось бы вдаваться в подробности опыта и задач, которые ставили перед собой экспериментаторы. Это увело бы повествование слишком далеко в сторону. Сейчас нам важно то, что в опыте сравнивалась скорость света Солнца в двух направлениях: с востока на запад — вдоль и с севера на юг — поперек движения Земли по орбите.

Сумма двух векторов, совпадающих по направлению, всегда больше суммы тех же векторов, направленных под углом друг к другу. И потому Майкельсон и Морли ожидали, что скорость света в сумме со скоростью движения Земли по разным направлениям даст разные величины. Каково же было их изумление, когда оказалось, что, с чем бы ни складывалась скорость света, она всегда остается одной и той же.

Значит, законы Эвклида для сложения скоростей не годятся! Значит, геометрия пространства скоростей неэвклидова. Забегая еще вперед, скажем, что в 1908 году немецкий математик Клейн обнаружил, что геометрия скоростей в точности совпадает с геометрией Лобачевского. «Из всех неэвклидовых геометрий, — пишет Я. А. Смородинский, — геометрия Лобачевского оказалась самой реальной, в то время как „реальная“ эвклидова оказалась лишь приближенной моделью».

Удивительные пространства Георга Фридриха Бернгарда Римана

Но продолжим историю конструирования новых миров, начатую нашим великим соотечественником.

Осенью 1853 года на математический факультет Геттингенского университета никому не известный доктор наук Риман подал конкурсную работу на соискание должности приват-доцента. По существующим правилам, кандидат должен был предложить еще три темы для пробной лекции. Глава факультета утверждал одну из них, и после прочтения лекции кандидатом совет окончательно решал вопрос о пригодности соискателя к преподавательской работе.

В Геттингене математический факультет возглавлял Гаусс. Он знал Римана еще по докторской диссертации. И существует

мнение, что побаивался гения молодого человека, видя в нем равного себе… Риман представил на рассмотрение три темы. Две из них не вызывали ни у кого ни малейшего сомнения. Третья же, посвященная основам геометрии, была абсолютно «темной лошадкой». Впрочем, Риман и не собирался выбирать ее в качестве темы пробной лекции. Обычно руководитель факультета утверждал самую первую тему из представленного списка, и на этом дело заканчивалось. Гаусс избрал третью.

Известный немецкий математик Вебер пишет: «Гаусс не без умысла выбрал именно данную тему из трех предложенных Риманом. Он сам признавался, что ему страстно хотелось услышать, как такой молодой человек сумеет найти выход из столь трудной игры».

Риману понадобилось почти полгода для окончания работы над вопросами, лишь намеченными названием темы. И вот наконец «Геттингенский Колосс» назначает заседание коллегии…

Лекция Римана называлась «О гипотезах, лежащих в основании геометрии». Докладчик рассматривал геометрию в наиболее обобщенном виде, как учение о непрерывных многообразиях не только привычных нам трех измерений, но и любых других nизмерений. Если в таких многообразиях определено или задано расстояние между бесконечно близкими их элементами, то есть известна метрика, то Риман называл такие многообразия пространствами, характеризуя их свойства кривизной.

Здесь, пожалуй, уместно немножко отступить в прошлое. Мысли о возможности существования у пространства не трех, а четырех измерений появились в математике очень давно. Историки отыскивают их еще во времена Диофанта, в 250 году до нашей эры. В более отчетливой форме высказывает ее Абу-л-Вафа Мухаммед ибн Мухаммед ал-Бузджани, уроженец Хоросана, работавший в X веке при дворе Бундов в Багдаде. Затем время от времени идеи о возможности обобщения пространственного измерения с трехмерного на четырехмерное и больше возникали у некоторых европейских математиков, вызывая недоверие у окружающих. Так было, пока в 1788 году французским математик Даламбер не присоединил к пространственным координатам x, yи zчетвертую координату — время t. Правда, эта последняя не пользовалась равными правами со всеми остальными. Если в пространстве можно двигаться в любом направлении, то дорога времени имеет знак одностороннего движения: от прошлого к настоящему и в будущее. Но не наоборот, дабы не нарушать принципа причинности, на котором основан мир. Тем не менее после Даламбера идея четвертого измерения пространства получила развитие в работах многих математиков. А затем пришла пора и не только четырехмерного, но и пяти-, и шести-, и вообще n– мерных пространств.

Дотошного читателя может заинтересовать вопрос: кому и зачем могут понадобиться подобные фантастические, непредставимые наглядно построения абстрактной математики? Дело в том, что отношения, установленные многомерной геометрией, могут истолковываться не обязательно как пространственные, а как совсем другие отношения между объектами, связанными законами многомерья. Один из возможных примеров приводит Э. Кольман в книге «Четвертое измерение».

Представьте себе, например, облачко газа, состоящее из nмолекул. Каждая молекула этого газа в любой момент времени занимает некое положение в пространстве, определяемое тремя координатами. Но, кроме того, каждая молекула обладает еще определенным импульсом (равным произведению массы на мгновенную скорость). Импульс же имеет тоже три слагаемых, три проекции на оси координат. Таким образом, для определения состояния материальной точки — молекулы потребуется шесть характеризующих ее величин. Иначе говоря, движение каждой молекулы можно теперь описать как движение точки в шестимерном пространстве. А изменение состояния всей системы из nмолекул — как движение некой материальной точки в 6 n– мерном фазовом пространстве. Причем линия траектории этого движения, называемая «фазовой траекторией», будет описывать изменение состояния всей системы газовых молекул. Такой метод многомерного фазового пространства применяется в различных науках: в механике и термодинамике, в физической химии и квантовой механике.

Поделиться с друзьями: