Чтение онлайн

ЖАНРЫ

Евклидово окно. История геометрии от параллельных прямых до гиперпространства
Шрифт:

В сходном тупике оказался и великий багдадский ученый IX века Сабит (Табит) ибн Курра [139] . Его логику можно постичь, вообразив, как Сабит прогуливается по прямой вдоль Пятой авеню, держа мерный шест длиной в один нью-йоркский квартал перпендикулярно той же Пятой авеню. Идет Сабит вдоль Пятой авеню, а конец его мерного шеста какую описывает траекторию? Сабит утверждал, что эта траектория — прямая линия, допустим, Шестая авеню. Из этого допущения Сабит и «доказывал» постулат параллельности. Линия, описываемая дальним концом мерного шеста, — определенно некоторая кривая, но на каком основании можем мы утверждать, что она есть прямая линия? Выясняется, что единственным основанием для этого утверждения является — совершенно верно! — постулат параллельности. Лишь в евклидовом пространстве набор точек, равноудаленных от некоторой прямой, есть прямая. Сабит, таким образом, повторил ошибку Птолемея.

139

Средневековая исламская цивилизация внесла огромный вклад в развитие всей математики,

не только сохранив работы греков, но и развив алгебру. Подробности см.: J. L. Berggren, Episodes in the Mathematics of Medieval Islam (New York: Springer-Verlag, 1986); коротко о жизни Сабита ибн Курра см. там же, стр. 2–4. Его попытка доказать постулат параллельности описана у Грея, стр. 43–44. Попытки других исламских математиков также приводятся у Грея.

Рассуждения Сабита касаются глубоких аспектов самого понятия пространства. Евклидова система геометрии зависит от возможности двигать фигуры и накладывать их одну на другую. Именно так проверяется конгруэнтность, или эквивалентность, геометрических фигур. Вообразите, что перемещаете треугольник. Естественный способ произвести такое перемещение — взять каждую из трех его сторон, являющихся сегментом прямой линии, и сдвинуть на одно и то же расстояние в одном и том же направлении. Но если набор точек, равноудаленных от данной прямой, не есть прямая, стороны смещенного треугольника перестанут быть прямыми. В процессе движения фигура исказится. А может ли пространство действительно иметь такое свойство? К сожалению, вместо того, чтобы довести это рассуждение до чудесных мест, в которые оно вело, Сабит интерпретировал угрозу искажения как «доказательство», что его допущение о равноудаленности прямых обоснованно.

Вскоре после Сабита исламская поддержка наук иссякла. Один провинциальный ученый жаловался даже, что там, где он жил, узаконили убийство математиков. (Скорее всего, это произошло не от общего презрения к умникам, а оттого, что математики имели привычку изучать астрологию, а ее, так уж исторически сложилось, частенько связывали с черной магией и считали опасной, а не милой безделицей, как сейчас.)

Порядковый номер года по христианскому календарю почти удвоился, когда геометрические труды Сабита и его последователей, наконец, воскресли. Это случилось в 1663 году, когда английский математик Джон Валлис [140] прочитал лекцию, в которой цитировал одного из преемников Сабита — Насира ад-Дина ат-Туси.

140

Уоллис

Валлис родился в Эшфорде, графство Кент, в 1616 году. Когда ему было пятнадцать, он застал брата за чтением книги по арифметике и сам сильно увлекся этим предметом. И математику не предал, хотя изучал богословие в кембриджском Эммануэл-Колледже, а в 1640 году был рукоположен в священники. На дворе стояли времена, обычно называемые Английской гражданской войной: между королем Карлом I и Парламентом происходили распри с религиозным подтекстом. Валлис преуспел в криптографии — разделе математики, связанном с расшифровкой сообщений; он помогал парламентариям. Говорят, за эти заслуги он и получил в 1649 году в Оксфорде Савилианскую кафедру геометрии [141] , после того как его предшественника Питера Тёрнера сместили за роялистские взгляды. Как бы то ни было, Оксфорду такая замена пошла только на пользу.

141

Сэр Генри Сэвил (1549–1622, в русскоязычной традиции — Савиль) — английский математик, учредил в Оксфорде в 1619 г. на собственные деньги две профессорские ставки — по геометрии и астрономии; эти две кафедры под именем «савилианских» получили большую известность. — Прим. пер.

Тёрнер всегда был просто-напросто дружком архиепископа кентерберийского и вечно описывал квадратуры в правильных политических кругах, но за всю жизнь не опубликовал ни одной математической работы. Валлис же стал ведущим английским математиком доньютоновской эпохи и повлиял на самого Ньютона. Ныне даже не-математики — особенно те, что разъезжают на известной марке дорогого автомобиля, — знакомы с хотя бы одним аспектом его трудов: Валлис ввел символ , обозначающий бесконечность [142] .

142

Имеется в виду торговая марка автомобилей класса «люкс» «ниссан-инфинити», принадлежащая японской компании «Ниссан Моторз». — Прим. пер.

Валлис предложил преобразовать евклидову геометрию заменой ужасного постулата параллельности другой формулировкой, интуитивно понятной. Примерно такой:

Треугольник с любыми длинами любых сторон можно увеличивать и уменьшать как угодно, изменяя длины сторон, но углы при этом останутся неизменны.

Допустим, у нас есть треугольник, у которого все углы равны 60°, а стороны — единичной длины; можно предположить, что существует другой треугольник, у которого углы тоже равны 60°, но стороны при этом какие угодно: 10, 10, 10 или 1/10, 1/10, 1/10 или 10 000, 10 000, 10 000. Такие треугольники — с пропорционально меньшими или большими сторонами, но с равными соответствующими углами — называются подобными. Если принять аксиому Валлиса, тогда, за вычетом пары преодолимых технических затруднений, постулат параллельности легко доказуем [143] с применением логики, похожей на Проклову. «Доказательство»

Валлиса математиками так и не было принято, потому что оно есть, по сути, подмена одного постулата другим. Однако, если мы проследуем логике Валлиса в обратную сторону — придем к изумительному результату: если существует пространство, в котором постулат параллельности недействителен, то подобных треугольников не существует.

143

Подробнее см. у Грея, стр. 57–58.

Ну и кому какое дело? А вот и нет: треугольники-то повсюду. Рассеките треугольник по диагонали — получите два треугольника. Уприте руку в бок — форма, образуемая при этом вашей рукой и боком, есть треугольник. В самом деле: хоть каждое тело и обладает уникальной формой, любое можно смоделировать при помощи сетки треугольников — с достаточной точностью; именно так устроена трехмерная компьютерная графика. А если подобных треугольников не существует, многие наши повседневные допущения не соответствуют действительности. Взгляните на симпатичный дамский костюм в каталоге одежды: вы ожидаете, что к вам прибудет экземпляр, подобный приведенному в каталоге, пусть даже и в десятки раз больше. Летите любимыми авиалиниями: вы предполагаете, что форма крыла, вполне пригодная для полета авиамоделей, имеет те же дивные свойства и у здоровенного самолета. Наймите архитектора, чтобы тот пристроил к вашему дому парочку дополнительных комнат: вы рассчитываете, что достраиваемые помещения соответствуют архитектурным чертежам. В неевклидовом пространстве этим ожиданиям никак не оправдаться. Ваши одежда, самолет и новая спальня претерпят искажения.

Быть может, такие странные пространства математически и существуют, но могут ли быть такие свойства у реального пространства? Мы бы ведь заметили, правда? Может, и нет. Отклонение в 10 % в форме вашей улыбки ваша мама, вероятно, заметит, а вот в 0,0000000001 % — скорее всего, нет. Неевклидовы пространства — почти евклидовы для маленьких фигур, а мы с вами живем в довольно маленьком углу Вселенной. Как и в квантовой теории, где законы физики принимают странные новые формы, лишь в мирах куда меньших, чем те, с которыми мы имеем дело ежедневно, может существовать искривленное пространство, но оно столь похоже на евклидово, что в масштабах обычной земной жизни мы не заметим разницу. И все-таки — как и в квантовой теории — последствия кривизны для физических теорий могут быть колоссальными.

К концу XVIII века, если бы математики взглянули на свои открытия по-другому, они бы заключили, что неевклидовы пространства существовать могут, а если так, у них могут быть кое-какие странные свойства. Однако вместо этого математики продолжили огорчаться из-за невозможности доказать, что эти странные свойства приводят к противоречиям, а значит, пространство — все-таки евклидово.

Следующие пятьдесят лет революция происходила тайно. Постепенно, за несколько столетий, были открыты новые виды пространств, но о них математическое сообщество либо умалчивало, либо их не замечало. До тех самых пор, пока ученые в середине XIX века не взялись разбираться с бумагами незадолго до этого почившего в бозе старика из немецкого Гёттингена, — тогда-то и открылись секреты неевклидова пространства. К тому времени большинство тех, кто открыл эти пространства, включая старика-немца, поумирало.

Глава 15. Наполеоновский герой

23 февраля 1855 года, Геттинген. Человек, возглавлявший атаку на Евклида, лежал в своей холодной постели, он был стар и каждый вздох давался ему с трудом. Его ослабевшее сердце едва толкало кровь по венам, а легкие переполнялись жидкостью. Карманные часы — тик-так, тик-так — отсчитывали время, что осталось ему на Земле. Но вот они остановились. Почти в тот же миг замерло и его сердце. Подобные символические детали обычно применяют лишь писатели [144] .

144

Подробное жизнеописание Гаусса см. в: G. Waldo Dunnigton, Carl Friedrich Gauss: Titan of Science (New York: Hafner Publishing Co., 1955).

Несколько дней спустя старика похоронили рядом с безымянной могилой его матери. После его смерти по всему дому обнаружилось немалое состояние, запрятанное по углам — в ящиках комода, в шкафчиках, в столе. Дом его был скромен, крошечный кабинет меблирован лишь столом, бюро и диваном, с одной лампой. Маленькая спальня не отапливалась.

Он провел большую часть жизни несчастным человеком, друзей у него было мало, а взглядов на жизнь он придерживался глубоко пессимистических [145] . Десятки лет преподавал в университете, однако считал эту работу «обременительной и неблагодарной» [146] . Он чувствовал, что «мир, лишенный бессмертия, — бессмыслен» [147] , однако сделаться верующим так и не смог. Он удостоился множества почестей, но писал, что «горести превосходят радость стократ» [148] . Он оказался в сердце восстания против Евклида, однако не желал, чтобы об этом узнали. Для ученых-математиков — и тогда, и ныне — этот человек, вместе с Архимедом и Ньютоном, — один из величайших математиков мира.

145

Muir, стр. 179.

146

Muir, стр. 181.

147

Muir, стр. 182.

148

Muir, стр. 179.

Поделиться с друзьями: