Евклидово окно. История геометрии от параллельных прямых до гиперпространства
Шрифт:
Первая трудность, которую пришлось преодолевать Гауссу, заключалась в ограниченных возможностях геодезических инструментов. Прямые линии приходилось строить из коротких отрезков, всякий раз — с определенной погрешностью измерения. И погрешности эти очень быстро накапливались. Гаусс с этой неувязкой взялся справляться не как любой нормальный исследователь, вроде автора этой книги, т. е. не стал ожесточенно рвать на себе волосы и время от времени орать на собственных детей, а тем временем по чуть-чуть приращивать точность измерения и затем публиковать результат в таких формулировках, чтобы звучало как можно солиднее. Нет, Гаусс разработал ключевую для современной теории вероятности и статистики идею — теорему, согласно которой случайные погрешности распределяются относительно среднего значения в виде
Разобравшись с задачей погрешностей, Гаусс взялся за следующую: как собрать двухмерную карту из данных о трехмерном пространстве, в котором поверхности имеют разную высоту и кривизну. Основная трудность заключается в том, что поверхность Земли имеет не ту же геометрию, что евклидова плоскость, — такова математическая версия бытового затруднения, какое испытывает любой родитель, когда-либо пытавшийся завернуть мяч в подарочную бумагу. Если вы как родитель эту проблему преодолеваете, нарезав бумагу маленькими квадратами и обклеив ими мяч, значит, вы применяете Гауссов подход — с поправкой на технические нюансы. Эти самые нюансы Гаусс опубликовал в статье 1827 года. С тех пор вокруг этой статьи образовалось целое отдельное направление математики — дифференциальная геометрия.
Дифференциальная геометрия — теория искривленных поверхности, в которой поверхность описывают методом координат, изобретенных Де картом, после чего анализируют при помощи дифференциального счисления. Вроде вполне частная теория, применимая, допустим, к кофейным чашкам, крыльям самолетов или к вашему носу — но не к устройству нашей Вселенной. У Гаусса было иное мнение. В статье он отразил два своих главных озарения. Перво-наперво заявил, что саму по себе поверхность можно считать пространством. Можно, иными словами, считать пространством поверхность Земли, чем она в бытовом смысле и являлась — до эпохи воздухоплавания, во всяком случае. Вероятно, Блейк не имел всего этого в виду, когда сочинил строку «Увидеть мир в одной песчинке» [177] , но в итоге поэзия сомкнулась с математикой.
177
Пер. С. Степанова. — Прим. пер.
Еще одно революционное открытие Гаусса: кривизну заданного пространства можно изучить исключительно в его пределах, без оглядки на большее пространство, которое может содержать, а может и не содержать заданного. Технически говоря, геометрия искривленного пространства может быть изучена без учета евклидова пространства большей размерности. Мысль о том, что пространство может «искривляться» само по себе, а не во что-то еще, позднее оказалась необходимой для общей теории относительности Эйнштейна. В конечном счете, коль скоро мы не можем выбраться за пределы нашей Вселенной и взглянуть на ограниченное трехмерное пространство, в котором обитаем, со стороны, лишь такая теорема оставляет нам надежду на определение кривизны нашего мира.
Чтобы понять, как нам определить кривизну вне зависимости от пространства снаружи, представим Алексея и Николая двухмерными существами в цивилизации, жестко привязанной к поверхности Земли. Насколько их опыт отличается от нашего — за вычетом воздушных перелетов, покорений Эвереста и того факта, что рекорд по прыжкам в высоту у этой цивилизации — ноль?
Вот, к примеру, эти самые прыжки в высоту. Дело не в том, что Алексей никак не может оторваться от земли, — для него не существует самого понятия такого отрыва. И нам, «трехмерникам», нечего тут задаваться. В эту самую минуту на какой-нибудь гулянке у четырехмерных существ одна-другая умиленная душа, быть может, потягивает «маргариту» и постигает нашу с вами ограниченность. Раса ползучих букашек, мы и помыслить не можем о прыжках «в высоту» в их четырехмерном пространстве.
Также требует пояснений и неспособность Алек сея и Николая влезть на Эверест. Ясное дело, добраться до вершины они могут — это же все равно часть земной поверхности. Но у них не будет представления о перемене высоты. Алексей выходит из лагеря у подножия и движется к вершине, а то,
что нам известно как земное тяготение, будет для него загадочной силой, которая тянет его назад к стоянке, словно горный пик наделен странным свойством отталкивания.Помимо этой загадочной силы, Алексей и Николай переживают искривление геометрии пространства. К примеру, любой треугольник, в котором содержится гора, включает в себя до странности большое пространство. Оно и понятно: поверхности горы больше площади ее основания, но Алексей и Николай воспримут это как искажение пространства.
Алексею и Николаю невдомек, что существуют палочки, воткнутые в песок; они не могут наблюдать никакого Солнца, отбрасывающего тени от этих палочек. Лодка, исчезающая за горизонтом, для них — плоская, у нее ни корпуса, ни мачт. Все подсказки о том, что наша планета круглая, подмеченные древними, исчезнут, а Николаю и Алексею будет известны лишь расстояния и отношения между точками в их пространстве. Без намеков из третьего измерения Евклид и сам заключил бы, что это пространство — неевклидово.
Треугольники на глобусе
Представим древнего ученого по имени Неевклида. Сидит она себе в своем кабинете в академии и приходит к тем же выводам, что и наш старик Евклид. Но прежде чем обнародовать свои «Начала», она желает проверить, приложимы ли ее теории к пространству за пределами стен академии, т. е. к широкомасштабной геометрии пространства. Ее ученик Алексей приносит ей карту из библиотеки — см. рисунок на стр. 185. На карте видно, что габонский Либревиль располагается на нулевой широте, 9° ВД в вершине прямоугольного треугольника, две другие вершины которого приблизительно приходятся на нигерийский Кано (24°) и угандийскую Кампалу. Одна из основных теорем евклидовой геометрии — теорема Пифагора. Неевклида просит Алексея произвести расчеты и проверить ее. Алексей докладывает:
Сумма квадратов катетов: 3 444 500
Квадрат гипотенузы: 3 404 025
Неевклида, взглянув на результаты, выговаривает Алексею: нерадивый ты счетовод. Однако, проделав повторный расчет собственноручно, Неевклида обнаруживает, что Алексей прав. Тогда Неевклида применяет другой оборонительный прием теоретика: она списывает расхождения в расчетах на экспериментальную ошибку. Отправляет в библиотеку другого своего ученика, Николая, чтобы он собрал больше данных. Николай возвращается с координатами вершин треугольника пообширнее: Либервиль, итальянский Кальяри (39 °CШ) и колумбийская Лерида (71° ЗД). Этот треугольник тоже отображен на карте. Николай вычисляет:
Сумма квадратов катетов: 38 264 845
Квадрат гипотенузы: 32 455 809
Неевклиде все это не нравится. Расхождение стало еще больше. Как мог ее коллега Непифагор так сильно ошибаться? Как так вышло, что Неевклида, померив уйму треугольников, ни разу не заметила этой нестыковки? «Те треугольники, — вмешивается Алексей, — были крошечными, а эти — громадные». Николай замечает, что чем больше треугольник, тем больше расхождение. Он выдвигает предположение, что все треугольники, которые им приходилось изучать, они измеряли в их крошечной лаборатории или в городе, и расхождения оказывались столь малы, что остались незамеченными.
Неевклида решает потратить кое-какие грантовые деньги и отправить Алексея и Николая в экспедицию в Нью-Йорк. Там по ее поручению, на 40°45’ СШ и 74°00’ ЗД, Николаю предстоит пройти расстояние в десять минут долготы на запад и оказаться примерно в центре Ньюарка. Николаю же поручено пройти десять минут широты на север — он окажется таким образом в Нью-Милфорде, штат Нью-Джерси. С хорошей точностью эти три точки образуют прямоугольный треугольник со следующими длинами сторон: Нью-Йорк — Нью-арк 8,73 мили; Нью-Йорк — Нью-Милфорд 11,53 мили; Нью-Милфорд — Ньюарк, 14,46 мили.