Чтение онлайн

ЖАНРЫ

Фейнмановские лекции по гравитации
Шрифт:

1

2

(

^1p

^2p

m^2

)

.

(4.3.5)

Выбранные обозначения (”черты”, ”подчёркивания” и т.п.) приведут к упрощениям в алгебраических манипуляциях в более сложных вычислениях, которые необходимо будет выполнять, так что стоит ими воспользоваться.

Наша теория дала нам выражение для амплитуды гравитационного рассеяния одной частицы другой. Для того, чтобы вычислить что-нибудь, что имеет измеримую величину, мы должны придти к очень большим значениям массы, и для того, чтобы наблюдать эффект, который не определяется ньютоновским законом, нам необходимо использовать движения со скоростями, близкими к скорости света. Мы можем, например, вычислить

угол отклонения тела малой массы, движущегося с очень большой скоростью (vc), которое отклоняется звездой, такой как Солнце. Здесь нам необходимо обосновать замену суммы амплитуд от всех частиц в звезде одной амплитудой, соответствующей массе M; подобная замена является аппроксимацией, но она даёт правильный ответ в первом порядке некоторого типа. Такой угол больше, чем его величина в рамках ньютоновской теории, и отличается на множитель (1+v^2/c^2).

Нельзя говорить о том, что этот результат соответствует отклонению света Солнца, потому что фотон не является скалярной частицей, отсюда следует, что он не может представляться скалярным массовым полем . Для рассеяния двух идентичных частиц такая амплитуда должна содержать обменный член, но для случая звезды - частицы, очевидно, не идентичны.

В нашей теории до сих пор не рассматривалась возможность того, что мы могли бы добавить член с нулевой дивергенцией к нашему тензору давления T; это соответствовало бы другому распределению в пространстве масс и давлений. Этот и связанные с ним вопросы в дальнейшем будут подробно обсуждаться. Даже для скалярной материи, как мы увидим, у нас есть действительная двусмысленность при определении тензора энергии-импульса T. Эта трудность также возникает в электродинамике, когда мы пытаемся записать взаимодействие фотонов с заряженными векторными мезонами.

4.4. Подробные свойства плоских волн. Эффект Комптона

Мы можем изучить свойства гравитационных волн в отсутствии материи; вариируя лагранжиан, получим уравнение

h

,

,

2

h

,

,

=

0,

(4.4.1)

которое аналогично уравнению Максвелла в пустом пространстве. Если мы используем решения типа плоских волн

h

=

e

exp(iq·x)

,

(4.4.2)

то уравнение принимает следующий вид

q^2

e

q

q

e

q

q

e

=

0.

(4.4.3)

Мы интересуемся случаями, когда q^2/=0 и q^2=0. Если q^2/=0, мы можем разделить на q^2 и переставить члены уравнения так, что

e

=

q

1

q^2

q

e

+

q

1

q^2

q

e

.

(4.4.4)

Такое разделение вектора на два слагаемых в точности выражает вектор e как симметризованный градиент

e

=

,

+

,

.

(4.4.5)

Ранее мы обсудили, как калибровочная инвариантность гравитационного поля означает, что добавление члена такого вида не приводит к отличиям в физике явления. Отсюда следует, что всегда можно добавить некоторый член к e так, что e=0.

Мы будем называть такие волны с q^2/=0 ”калибровочными волнами”; эти волны не связаны ни с какими физическими эффектами и могут быть всегда устранены калибровочным преобразованием.

Если q^2=0, то из уравнения (4.3.3) следует, что

q

e

=

0.

(4.4.6)

Это так называемые свободные волны должны удовлетворять лоренцеву калибровочному условию. Дело не только в выборе

h

,

=

0

(4.4.7)

для удобства в случаях, в которых волна не свободна. Этот факт имеет свой электромагнитный аналог, для фотонов величина qe должна быть равна нулю.

Мы можем вывести действительный вид тензора поляризации e в системе координат такой, что 4-вектор импульса равен

q

=

(,,0,0)

.

(4.4.8)

Если мы выбираем

e'

=

e

+

q

+

q

(4.4.9)

и требуем, что e' должна иметь компоненты только в трансверсальном направлении, мы получаем систему уравнений, которая может быть разрешена и получен ответ

e'

=-

e'

=

1

2

,

e'

=

e'

=

1

2

.

(4.4.10)

Для того, чтобы получить соотношения (4.4.10), заметим, что из уравнения (4.4.6) следует, что e4=-e3, так что только компоненты с индексами 4, 1 и 2 являются независимыми. Компоненты с индексом 4 могут быть удалены, если требуется, с помощью преобразования (4.4.9). Например, e'=e+, тогда выберем =-e/, =-e/. Тогда e'=e+-, выберем -=-e/ тогда e'=e'=e'=e'=0. Выбирая =-e/2, сделаем следующую величину равной нулю e'=e+2=0. Тогда, так как величина e' также равна нулю, то след e' равен нулю, следовательно, равны нулю также и e' и e'+e' Поэтому остались ненулевыми среди величин e' только компоненты с индексами , = 1 или 2 и для них e'=-e' Имеется только две линейно независимые нормализованные комбинации (4.4.10).

Рис. 4.3.

Амплитуда для комптоновского рассеяния гравитона частицей массы m соответствует диаграммам, изображённым на рис. 4.3. Поляризации гравитона представляются тензором e; для скалярной массы компоненты импульса в каждой вершине -^1p, (^1p+^1q) = (^2p+^2q) и ^2p. На языке этих величин мы имеем для первой диаграммы

4^2

^2

e

^2p

(

^2p

+

^2q

)-

1

2

m^2

1

(^1p+^1q)^2-m^2

x

x

^1

e

^1p

(

^2p

+

^2q

)-

1

2

m^2

.

(4.4.11)

Поделиться с друзьями: