Чтение онлайн

ЖАНРЫ

Квантовая механика и интегралы по траекториям
Шрифт:

С другой стороны, возникновение интерференции между альтернативами, если спиновые состояния нейтронов не изменились, означает, что даже в принципе невозможно когда-либо обнаружить, на каком отдельном ядре кристалла произошло рассеяние — невозможно, во всяком случае, без вмешательства в опыт в момент рассеяния или до него.

§ 4. Краткий обзор понятий, связанных с вероятностью

Альтернативы и принцип неопределённости. В предыдущем изложении мы хотели разъяснить смысл амплитуды вероятности, её значение в квантовой механике и рассмотреть правила обращения с вероятностями. При этом выяснилось, что существует некоторая величина, называемая амплитудой вероятности, сопоставляемая каждому возможному в природе способу осуществления события. Например, электрон, летящий от источника S в детектор, расположенный в точке x (см. фиг. 1.1), имеет одну амплитуду вероятности, когда он движется через отверстие 1

экрана B, и другую амплитуду, если он проходит через отверстие 2. Событию в целом можно затем сопоставить амплитуду вероятности, получаемую путём сложения амплитуд для каждого альтернативного способа движения. Так, приведённая в равенстве (1.2) полная амплитуда вероятности попадания в точку x есть

=

1

+

2

.

(1.14)

Квадрат модуля полной амплитуды мы интерпретируем как вероятность того, что соответствующее событие произойдёт. Например, вероятность попадания электрона в детектор

P=|

1

+

2

|^2.

(1.15)

Если мы прерываем развитие процесса ещё до его завершения, наблюдая состояние частиц в ходе события, то тем самым изменяем вид выражения для полной амплитуды. Так, если установлено, что система находится в некотором определённом состоянии, то тем самым мы исключаем возможность того, чтобы она оказалась в каком-либо другом состоянии, и при вычислении полной вероятности амплитуды, связанные с такими исключёнными состояниями, уже нельзя рассматривать в качестве альтернатив. Например, если с помощью какого-нибудь устройства определить, что электрон проходит именно через отверстие 1, то амплитуда его попадания в детектор будет точно равна 1. Совершенно неважно, будем ли мы (в тот момент, когда работает измеряющее устройство) фактически наблюдать и записывать результат наблюдения или же нет. Очевидно, что при желании его можно было бы узнать в любое время. Уже одного вмешательства измеряющего устройства достаточно, чтобы изменить систему и соответствующую амплитуду полной вероятности.

Это последнее обстоятельство и составляет основу принципа неопределённости Гейзенберга, который утверждает, что существует естественный предел точности любого эксперимента и любого усовершенствования измерений.

Структура амплитуды вероятности. Амплитуда вероятности всякого события представляет собой сумму амплитуд различных альтернативных возможностей осуществления этого события. Это позволяет изучать её многими различными способами в зависимости от того, на какие классы можно подразделить альтернативы. Наиболее детальная картина получается при условии, что частица при переходе из состояния A в состояние B за данный промежуток времени совершает вполне определённое движение (т.е. определённым образом изменяет свои координаты в зависимости от времени), описывая конкретную траекторию в пространстве и времени. С каждым таким возможным движением мы будем связывать одну амплитуду; полная же амплитуда вероятности будет суммой вкладов от всех траекторий.

Эту мысль можно пояснить, продолжив рассмотрение нашего эксперимента с двумя отверстиями. Пусть между источником и отверстием помещена пара дополнительных экранов D и E (фиг. 19). В каждом из них проделаем по нескольку отверстий, которые обозначим D1, D2, … и E1, E2, … . Для простоты будем предполагать, что движение электронов происходит в плоскости (x, y). В таком случае имеется несколько альтернативных траекторий, которые может выбрать электрон при своём движении от источника к отверстию в экране B. Он мог бы направиться сначала к отверстию D2, далее к E3 и затем к отверстию 1 или же мог бы, выйдя из источника, пролететь через D3, затем через E3 и, наконец, через отверстие 1 и т.д. Каждой из этих траекторий соответствует своя собственная амплитуда, и полная амплитуда вероятности будет их суммой.

Фиг. 1.9. Опыт с несколькими отверстиями в экранах.

Когда в экранах D и E, помещённых между источником на экране A и конечной точкой на экране C, проделано несколько отверстий, для каждого электрона имеется несколько альтернативных траекторий. Каждой из этих траекторий соответствует своя амплитуда вероятности. Чтобы определить результат какого-либо эксперимента, в котором открыты все отверстия, необходимо просуммировать все эти амплитуды по одной для каждой возможной траектории.

Предположим теперь, что мы увеличиваем

число отверстий в экранах D и E до тех пор, пока от экранов ничего не останется. Траектория электрона должна определяться в этом случае высотой xD, на которой электрон пересекает несуществующий экран D, расположенный от источника на расстоянии yD, а также высотой xE и расстоянием yE, как это показано на фиг. 1.10. Каждой паре значений xD и xE здесь соответствует своя амплитуда. Принцип суперпозиции по-прежнему остаётся в силе, и мы должны взять сумму (теперь уже интеграл) этих амплитуд по всем возможным значениям xD и xE.

Фиг. 1.10. Число отверстий стремится к бесконечности.

В экранах, расположенных на расстояниях yD и yE от экрана A, проделывается все большее и большее число отверстий. В конце концов экраны полностью заполняются отверстиями, и получается непрерывная область точек вверх и вниз от центров экранов, в которых электрон может пересекать линию экрана. В этом случае сумма альтернатив превращается в двойной интеграл по непрерывным параметрам xD и xE — альтернативным высотам, на которых электрон пересекает экраны.

Следующий шаг, очевидно, состоит в размещении между источником и отверстиями все большего и большего числа экранов, причём каждый из них должен сплошь покрываться отверстиями. Продолжая этот процесс, мы будем все более уточнять траекторию электрона, пока, наконец, не придём к вполне разумному выводу, что траектория является просто определённой функцией высоты от расстояния, т.е. x=x(y). При этом мы должны применять принцип суперпозиции до тех пор, пока не получим интеграл от амплитуды по всем траекториям.

Теперь можно дать значительно более точное описание движения. Мы можем не только представить себе определённую траекторию x=x(y) в пространстве, но и точно указать момент времени, в который проходится каждая пространственная точка. Следовательно, траектория (в нашем двумерном случае) будет задана, если известны две функции: x(t) и y(t). Таким образом, мы приходим к представлению об амплитуде, соответствующей определённой траектории x(t), y(t). Полная амплитуда вероятности попадания в конечную точку представляет собой сумму или интеграл от этой амплитуды по всем возможным траекториям.

Задаче более точного математического определения такого понятия суммы или интеграла по всем траекториям будет посвящена гл. 2.

Там же мы получим выражение амплитуды вероятности для любой заданной траектории. После того как это выражение найдено, законы нерелятивистской квантовой механики оказываются полностью установленными и останется лишь продемонстрировать их применение в ряде интересных специальных случаев.

§ 5. Над чем ещё следует подумать

Мы увидим, что в квантовой механике амплитуды являются решениями строго детерминистского уравнения, уравнения Шрёдингера в том смысле, что если амплитуда известна в момент времени t = 0, то мы будем знать её и во все последующие моменты времени. Истолкование же ||^2 как вероятности события — индетерминистское. Оно означает, что нельзя точно предсказать результат эксперимента. Весьма примечательно, что такое истолкование не приводит к каким-либо внутренним противоречиям. Это было показано Гейзенбергом, Бором, Борном, Нейманом и многими другими физиками на примере огромного количества частных случаев. Однако, несмотря на все эти исследования, нельзя считать доказанным, что такие противоречия никогда не смогут возникнуть. По этой причине квантовая механика кажется новичку трудной и до некоторой степени таинственной дисциплиной. Тайна постепенно уменьшается по мере того, как разбирается все большее число примеров, но никогда не исчезает полностью ощущение, что у этого предмета есть что-то необычное.

Существует несколько проблем, связанных с интерпретацией, над которыми можно было бы ещё поработать. Эти проблемы трудно изложить, пока они ещё полностью не разработаны. Одна из них — это доказать, что вероятностная интерпретация функции является единственной последовательной интерпретацией этой величины. Мы и наши измерительные средства составляем часть природы и, следовательно, должны в принципе описываться функцией, удовлетворяющей детерминистскому уравнению. Почему же мы можем предсказать лишь вероятность того, что данный эксперимент приведёт к некоторому определённому результату? Откуда возникает неопределённость? Почти нет сомнения, что она возникает из необходимости усиливать эффекты одиночных атомных событий до уровня, доступного наблюдению с помощью больших систем. Детали же должны изучаться только на основе предположения, что ||^2 есть вероятность, а последовательность этой гипотезы уже доказана. Было бы интересно показать, что нельзя предложить никакого другого последовательного истолкования этой величины.

Поделиться с друзьями: