Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Рис. 7.4.Модель газа в ящике: некоторое количество шаров распределено по значительно большему числу ячеек. Одна десятая часть ячеек отмечены как особые . Эти ячейки выделены в левом верхнем углу
Мы хотим теперь случайным образом распределить m шаров среди всех ячеек и найти вероятность того, что все шары окажутся в особых ячейках. В случае, когда имеется только один шар и десять ячеек (т. е. имеется только одна особая ячейка), эта вероятность, очевидно, равна одной десятой. Тот же результат получится в случае одного шара и любого числа 10n ячеек (т. е. в случае n особых ячеек). Таким образом, для газа, состоящего только из о дногоатома, особая область, соответствующая «газу, собранному в углу ящика», будет иметь фазовый объем, составляющий лишь одну десятуювсего объема «фазового пространства». Однако, если мы увеличим число шаров, вероятность того, что всеони соберутся в особых ячейках, существенно
170
В общем случае n , m вероятность равна
Таким образом, в случае газа из двух атомов фазовый объем особой области составляет только одну сотуючасть всего «фазового пространства». Для трехшаров и тридцати ячеек ( m = 3 , n = 3 ), он будет составлять 1 / 4060 всего фазового объема, а в пределе бесконечного числа ячеек — 1 / 1000 — т. е. для газа из трехатомов объем особой части будет составлять одну тысячнуюобъема всего «фазового пространства». Для четырех шаров в пределе бесконечного числа ячеек вероятность становится равной 1 / 10000 . Для пяти шаров — 1 / 100 000 и т. д. Для m шаров в пределе бесконечного числа ячеек вероятность стремится к 1 / 10 m ; т. е. для «газа» из m атомов фазовый объем особой области составляет только 1 / 10 m от всего «фазового объема». (Этот результат остается справедливым, если учесть также и импульсы.)
Мы можем применить теперь те же оценки к нашей ситуации с реальным газом в ящике, только в этом случае для особой области нам нужно вместо одной десятой взять одну миллионную ( 1 / 1000000 ) от общего объема ящика (т. е. отношение объемов одного кубического сантиметра и одного кубического метра). В результате, вместо значения 1 / 10 m для вероятности обнаружить все частицы газа в особой области, мы получим 1 / 1 000000 m , т. е. 1 / 10 6m . Для воздуха, взятого при нормальных условиях, в нашем ящике находилось бы около 10 25 молекул, поэтому мы принимаем m = 10 25 . Таким образом, особая область фазового пространства, представляющая состояния, в которых весь газ сосредоточен в углу ящика, составляет только
1 / 10 60 000 000 000 000 000 000 000 000
часть всего фазового пространства!
Энтропия состояния — это мера объемаVобласти фазового пространства, которая содержит все точки, представляющие данное состояние. Ввиду гигантской разницы между объемами, которую мы оценили выше, более удобным оказывается определять энтропию как величину, пропорциональную не самим объемам, а их логарифмам:
энтропия = k logV.
Использование логарифма делает все возникающие в расчетах числа более обозримыми. Так, к примеру, логарифм [171] 10000000 составляет всего-навсего число, близкое к 16 . Величина k — константа, называемая постоянной Больцмана . Ее значение приблизительно равно 10 – 23 джоулей на один градус Кельвина.
171
Используемый здесь логарифм называется натуральным, т. е. берется по основанию
е = 2,7182818285 …,
а
не по основанию 10 , однако это различие в нашем случае совершенно несущественно. Натуральный логарифм, x = log n , числа n — это степень, в которую мы должны возвести е , чтобы получить n , т. е. решение уравнения e x = n (см. ссылку 62).Одним из важнейших следствий использования логарифма в определении энтропии является ее аддитивность в случае независимых систем. Другими словами, полная энтропия двух независимых физических систем, рассматриваемых как одна система, равна суммеих энтропий. (Это и есть основное свойство логарифмической функции: logАВ= logА+ logВ. Если эти подсистемы находятся в состояниях, изображающихся областями с объемами Аи Вв соответствующих им фазовых пространствах, то объем фазового пространства для составной системы будет равен произведению их объемов АВ, поскольку каждое микроскопическое состояние одной системы должно быть независимо учтено вместе с каждым микроскопическим состоянием другой; и, следовательно, энтропия составной системы, очевидно, будет равна именно сумме энтропий отдельных систем.)
Те гигантские отличия между размерами различных частей фазового пространства, о которых говорилось выше, в терминах энтропии будут выглядеть более скромно. Энтропия нашего кубического метра газа, как следует из предыдущих рассмотрений, оказывается всего на 1400 Дж/ К(= 14k х 10 25 ) больше энтропии того же газа, сосредоточенного в кубическом сантиметре «особой» области (так как
составляет примерно 14 х 10 25 ).
Для того, чтобы определить реальные значения энтропии для указанных областей фазового пространства, нам осталось бы только немного позаботиться о выборе системы единиц (метры, джоули, килограммы, градусы Кельвина и т. д.). Однако, на самом деле, здесь было бы совсем неуместным заботиться об этом: для тех чудовищно огромных значений энтропии, которые я буду рассматривать в дальнейшем, выбор системы единиц не играет особой роли. Все же для определенности (и для специалистов), я скажу, что буду пользоваться так называемой естественной системой единиц, которая следует из законов квантовой механики и в которой постоянная Больцмана оказывается равной единице :
k = 1 .
Второе начало в действии
Предположим, что мы привели некоторую систему в особое начальное состояние, например, поместили газ в один из углов ящика в начальный момент времени. В следующее мгновение этот газ начнет стремительно расширяться и занимать все больший и больший объем. Через некоторое время он достигнет состояния теплового равновесия. Как описывается этот процесс на языке фазового пространства? В каждый момент времени микроскопическое состояние нашего газа, зависящее от положений и скоростей всех его молекул, изображается определенной точкой фазового пространства. По мере того, как газ расширяется, эта точка как-то блуждает в фазовом пространстве, при этом точная траектория ее блужданий будет полной историей всех молекул газа. Эта точка стартует из некоторой ничтожно малой области, а именно, той, которая включает в себя всевозможные начальные микроскопические состояния, соответствующие газу, сосредоточенному в одном из углов ящика. Далее наша движущаяся точка проходит последовательность областей фазового пространства, объемы которых монотонно возрастают, что является отражением процесса расширения газа внутри ящика. По мере расширения газа, точка продолжает свое путешествие, попадая в области фазового пространства все больших и больших объемов, причем каждый новый объем будет превосходить все предшествующие по своим размерам в огромное число раз (рис. 7.5)!
Рис. 7.5.Второе начало термодинамики в действии: с течением времени точка фазового пространства попадает в области все больших и больших объемов. Следовательно, энтропия постоянно возрастает
Всякий раз, когда точка оказывается в очередном большем объеме, у нее практически нет никаких шансов вернуться в какой-либо из предыдущих объемов меньших размеров. В конце концов, она оказывается внутри области фазового пространства наибольшего объема, соответствующей тепловому равновесию.
Этот объем занимает почти все фазовое пространство. И едва ли кто-то будет сомневаться в том, что наша точка фазового пространства в процессе своих случайных блужданий не вернется ни в какую из областей меньшего размера за любое разумное время. Можно также утверждать, что газ, достигнув состояния теплового равновесия, останется в нем практически навсегда. Мы видим, таким образом, что энтропия системы как логарифмическая мера ее фазового объема, должна так же монотонно возрастать с течением времени, как и сам фазовый объем [172] .
172
Было бы, конечно, неверным утверждать, что наша точка фазового пространства вообще никогда не достигнет ни одной из предшествующих областей меньшего объема. Если мы подождем достаточно долго, точка может снова оказаться внутри одного из них, несмотря на его ничтожно малый объем (в соответствии с теоремой о возвращении Пуанкаре .) Однако, в подавляющем большинстве случаев, соответствующие масштабы времен будут чудовищно велики, порядка
лет, в случае газа, собравшегося в сантиметровом кубике в одном из углов ящика. Это на много порядков больше времени существования вселенной. Я не собираюсь обсуждать эту возможность в дальнейшем из-за ее практической нереализуемости.