Чтение онлайн

ЖАНРЫ

Пространство, время и движение. Величайшие идеи Вселенной
Шрифт:

Лишь через несколько лет физики догадались, что все так и есть. Очевидный дефект метрики при радиусе Шварцшильда — это лишь координатная сингулярность: лишь неудачный выбор системы координат, а не физическая неопределенность. Любая инвариантная к координатам функция, которую можно вывести из тензора Римана, при r = 2GM будет конечной, какими большими бы ни были значения элементов метрики. На радиусе Шварцшильда, несомненно, происходит что-то интересное, ведь это горизонт событий черной дыры, как мы уже скоро увидим. И все же пространство-время ведет себя там предсказуемым образом.

Дальнейший анализ метрики приводит к еще большим проблемам в другой точке,

где r = 0, а 2GM/r = ?. Там gtt стремится к бесконечности, а grr — к нулю. Можно предположить, что и здесь во всем виновата система координат.

Но нет. В точке r = 0 находится настоящая сингулярность кривизны, где кривизна самого пространства-времени, как кажется, становится бесконечно большой. И это действительно очень плохо. Можно было надеяться, что сингулярность возникла здесь потому, что мы слишком упростили условия, взяв точную сферическую симметрию, которой в реальности не бывает. И все-таки серия теорем о сингулярности, доказанных Роджером Пенроузом и Стивеном Хокингом в 1960-х годах, разрушила эту надежду. Ученые показали, что сингулярности кривизны предсказуемо возникают при самых разных физически реалистичных условиях.

Общая теория относительности играет с нами в игры. Согласно принципу космической цензуры, который предложил в 1969 году Пенроуз, любая сингулярность, предсказанная общей теорией относительности, будет скрыта за горизонтом событий. В мире нет голых сингулярностей, не закрытых горизонтами и доступных для прямого изучения. Уже в наши дни путем численного моделирования удалось показать, что космическая цензура действует не всегда и можно придумать такие начальные условия, при которых появится голая сингулярность. Однако эти условия должны быть бесконечно точны, так как любое отклонение приводит к появлению горизонта событий. Поиск голых сингулярностей в реальном мире не кажется перспективной программой для исследований.

Большинство физиков сходится во мнении, что в природе нет сингулярностей: ни голых, ни каких-то иных. Мы живем в квантово-механическом мире, а значит, классическая по сути своей теория Эйнштейна перестает работать при некоторых условиях и не может все объяснить. Поэтому не нужно так рьяно цепляться за нее, а двигаться дальше, к новым теориям, которые сгладят сингулярности или, по крайней мере, снимут с повестки дня связанные с ними концептуальные вопросы. Что ж, будем надеяться на квантовую теорию гравитации. На сегодняшний день проблема сингулярностей еще актуальна.

Черные дыры

Радиус Шварцшильда определяет поверхность — так называемый горизонт событий, внутри которого находится особая область пространства-времени: черная дыра. Давайте подумаем о них. Представим себе пространство-время, которое во всех точках описывается метрикой Шварцшильда, а протяженные объекты, вроде звезд и планет, отсутствуют.

Держа в руках метрику, мы можем построить световые конусы. Ведь именно они, а не системы координат или любимое многими разграничение на время и пространство показывают реальную структуру пространства-времени. Посмотрим, как будут выглядеть световые конусы на диаграмме пространства-времени с геометрией Шварцшильда, как бы его глазами.

В такой сферически симметричной геометрии в угловых направлениях ? и ? ничего интересного не происходит. Нам нужно говорить о координатах (t, r), и в них мы имеем нечто, похожее на этот рисунок. Давайте сначала рассмотрим его. Итак, мы нарисовали лучи света,

проходящие через несколько точек, а также направленные в будущее световые конусы. Странная картина, скажете вы? Не удивительно: многие очень умные люди, включая Эйнштейна, десятки лет ломали над ней голову. Скоро мы поменяем систему координат, и все немного прояснится.

Да, здесь есть о чем поразмыслить. Справа, при больших значениях r, мы видим привычное нам пространство-время Минковского: нулевые траектории наклонены под углом 45°, а световые конусы направлены вверх. И это имеет физический смысл, поскольку вдали от черной дыры нет заметных гравитационных полей.

По мере приближения к горизонту событий (r = 2GM) световые конусы начинают складываться. Возникает странное впечатление, что мы не можем пересечь радиус Шварцшильда, ведь двигаться можно только в пределах световых конусов. Все дело в системе координат, которая перестает работать на этом участке, и скоро мы убедимся в этом.

За горизонтом событий творится нечто безумное. Сначала световые конусы очень широки, но по мере уменьшения r сужаются. При этом, что поразительно, они направлены влево, а не вверх. И мы по-прежнему обязаны оставаться в их пределах. Следовательно, перемещаясь в сторону уменьшения r за горизонтом событий черной дыры, мы движемся вперед по времени.

Становится ясно, что мы ошибались при размышлениях об r = 0. Интуитивно представляя себе плоское пространство-время, мы принимали эту точку как некое место, начало координат в центре черной дыры. Но это не так. На самом деле r = 0 — не точка в пространстве, а момент во времени. Более того, этот момент неизбежно настанет для всех, кто находится в черной дыре. Как бы мы ни старались, пройти мимо сингулярности не удастся: это не проще, чем обойти стороной завтрашний день.

Вы спросите: как же мы догадались об этом? Но разве мы не хозяева собственных координат, не можем определять их по своему усмотрению? Конечно хозяева. Но здесь мы уже сделали выбор, определили r как радиус сферы, которая окружает источник гравитации. И эта система координат прекрасно работала, давала понятные результаты вне горизонта событий. Но в черной дыре она дает сбой, и мы имеем то, что имеем, а именно превращение r из пространственной координаты во временную.

Попробуем разобраться в причудливых трансформациях r и убедиться в том, что все еще остаемся в реальном мире: поговорим о формулах, определяющих световые конусы.

Что значит «построить световой конус»? Мы выбираем точку и проводим линии, движение по которым не изменяет пространственно-временного положения: ds2 = 0. Вернувшись к линейному элементу (9.6) и вычеркнув из него ? и ? (так как движения в этих направлениях нет), получим:

(9.10)

Поупражняемся в математике. Перенесем второе слагаемое в правую часть, умножим обе части на –1, чтобы убрать неудобные минусы, а затем разделим на (1–2GM/r). Запишем:

(9.11)

Сплошные квадраты. Давайте извлечем из них корень (не забывая добавить знак «±», чтобы учесть, что до возведения в степень числа могли быть и отрицательными), а затем разделим все на dr:

(9.12)

Поделиться с друзьями: