Чтение онлайн

ЖАНРЫ

Схемотехника аналоговых электронных устройств

Красько А. С.

Шрифт:

где UR — граница области управляемого сопротивления на выходных статических характеристиках транзистора (рисунок 2.30),

UR ≈ (1…2) В;

Iс0 ≥ Uвых/R,

где RRсRн — сопротивление нагрузки каскада по переменному току;

),

где Uотс 

напряжение отсечки, Iси — ток стока при Uзи=0 В (либо при Uзи=2Uотс для ПТ в режиме обогащения, см. рисунок 2.33 в подразделе 2.10).

С помощью резистора Rи, помимо задания необходимого напряжения смещения, в каскад вводится ООС, способствующая термостабилизации (у ПТ как и у БТ наблюдается сильная температурная зависимость параметров), на частотах сигнала эта ОС устраняется путем включения Cи.

Графически проиллюстрировать работу каскада с ОИ можно, используя проходные и выходные статические характеристики ПТ, путем построения его динамических характеристик. Построение во многом аналогично каскаду с ОЭ и отдельно не рассматривается.

Нетрудно показать, что каскад с ОИ, как и каскад с ОЭ, инвертирует входной сигнал.

На рисунке 2.31 а,б,в приведены, соответственно, малосигнальные схемы для областей СЧ,НЧ, и ВЧ.

Рисунок 2.31. Схемы каскада с ОИ для СЧ, ВЧ и НЧ

Для расчета параметров усилительного каскада по переменному току удобно использовать методику, описанную в разделе 2.3, а ПТ представить моделью, предложенной в разделе 2.4.2.

 В результате расчета в области СЧ получим:

K0 = S0Rэкв,

где RэквRсRн;

gвх ≈ 1/Rз,

gвыхgс = 1/Rз.

Эти соотношения получены в предположении, что низкочастотное значение внутренней проводимости транзистора g22э много меньше gс и gн. Это условие (если не будет оговорено особо) будет действовать и при дальнейшем анализе усилительных каскадов на ПТ.

В области ВЧ получим:

,

где τв — постоянная времени каскада в области ВЧ, τвCнRэкв;

где Cвхдин = Cзи + Cзс(1 + K0);

Выражения

для относительного коэффициента передачи Yв и коэффициента частотных искажений Mв и соотношения для построения АЧХ и ФЧХ каскада с ОК аналогичны приведенным в разделе 2.5 для каскада с ОЭ.

 В области НЧ получим:

Kн = K0/(1 + 1/jωτн),

где τн — постоянная времени разделительной цепи в области НЧ. далее все так же, как для каскада с ОЭ.

2.10. Термостабилизация режима каскада на ПТ

 Различают, по крайней мере, шесть типов ПТ, показанные на рисунке 2.32.

Рисунок 2.32. Основные типы ПТ

Проходные характеристики n-канальных ПТ в режиме обогащения, смешанном и обеднения приведены, соответственно на рисунке 2.33 а,б,в, для p-канальных ПТ они будут отличаться противоположной полярностью питающих напряжений.

Рисунок 2.33. Проходные характеристики ПТ

С помощью рассмотренной схемы автосмещения (рисунок 2.29) возможно обеспечение требуемого режима по постоянному току для ПТ, имеющих проходную характеристику, изображенную на рисунке 2.33а, и — (при отрицательном смещении) — на рисунке 2.33б. Более универсальной схемой питания ПТ является схема с делителем в цепи затвора (рисунок 2.34), способная обеспечить любую полярность напряжения смещения Uзи0.

Рисунок 2.34. Схема питания ПТ с делителем в цепи затвора

В [1] приведен ряд полезных практических соотношений:

где соответствующие токи показаны на рисунке 2.33, а Sси — крутизна при токе стока равном Iси.

В ПТ температурная нестабильность тока стока обусловлена следующими факторами (при росте температуры):

◆ увеличением тока стока за счет теплового смещения проходных характеристик (как и в БТ) при малых значениях тока покоя стока Iс0;

◆ уменьшением тока стока за счет удельного сопротивления канала в широком диапазоне изменения тока покоя стока Iс0.

Следовательно, у некоторых типов ПТ возможно существование термостабильной точки покоя (рисунок 2.35).

Рисунок 2.35. Температурная зависимость тока стока

Координаты термостабильной точки и соответствующую им крутизну можно приближенно оценить по следующим соотношениям [1]:

UзTUотс – 0,63 В;

IсT = 0,4·Iси/U²отс ≈ (0,1…0,6) мА;

S0TIсT/0,32.

Поскольку ток IсT относительно мал, можно сделать вывод, что широком диапазоне изменений тока стока последний уменьшается с ростом температуры.

Поделиться с друзьями: