Схемотехника аналоговых электронных устройств
Шрифт:
Рассмотренные основные схемы питания ПТ осуществляют термостабилизацию режима за счет ООС (последовательной по постоянному току) аналогично каскаду на БТ, т.е. уход тока стока уменьшается в (1 + S0Rи) раз. Собственно ΔIс0 определяется по справочным данным, составляющую теплового смещения проходных характеристик можно определить по аналогии с БТ. Отрицательная температурная зависимость тока стока ПТ может быть использована в целях термокомпенсации каскадов на БТ.
2.11. Усилительный каскад на полевом транзисторе с ОС
Вариант схемы каскада с ОС с автосмещением приведен на рисунке 2.36, схемы для областей СЧ,ВЧ и НЧ приведены, соответственно, на рисунках 2.37а,б,в.
Рисунок 2.36.
Рисунок 2.37. Схемы каскада с ОС для СЧ, ВЧ и НЧ
Каскад с ОС называют еще "истоковым повторителем" или "повторителем напряжения, т.к., аналогично каскаду с ОК, можно показать, что коэффициент передачи по напряжению этого каскада меньше единицы, и что каскад с ОС не инвертирует фазу входного сигнала.
Графический анализ работы усилительного каскада с ОС проводится как для ОЭ (см. раздел 2.5).
Для расчета параметров каскада с ОС по переменному току используем методику раздела 2.3, а ПТ представлять моделью предложенной в разделе 2.4.2.
Проведя анализ, получим для области СЧ:
где Rэкв= Rи∥Rн, F = 1 + S0Rэкв — глубина ООС;
Rвх ≈ Rз,
Rвых = Rи ∥ Rвых T,
где Rвых T — выходное сопротивление собственно транзистора, Rвых T ≈ 1/S0.
В целом
Rвых T ≈ 1/S0,
потому, что, как правило, Rи >> 1/S0.
В области ВЧ получим:
где τв — постоянная времени каскада в области ВЧ, определяемая аналогично ОИ;
Yвх ≈ 1/Rз + jωCвх дин,
где Cвх дин = Cзи + Cн·(K0 + 1);
Выражения для относительного коэффициента передачи Yв и коэффициента частотных искажений Mв и соотношения для построения АЧХ и ФЧХ каскада с ОК аналогичны приведенным в разделе 2.5 для каскада с ОЭ.
В области НЧ получим:
Kн = K0/(1 + 1/jωτн),
где τн — постоянная времени разделительной цепи в области НЧ. далее все так же, как для каскада с ОИ.
Усилительный каскад с ОЗ (рисунок 2.38)
на практике используется редко, поэтому отдельно рассматриваться не будет. Отметим только, входное сопротивление каскада определяется аналогично выходному для истокового повторителя (≈1/S0), а остальные параметры — аналогично ОИ.Рисунок 2.38. Усилительный каскад с ОЭ
Характеристики ПТ при различных схемах включения приведены в таблице 2.2.
Таблица 2.2
Характеристики ПТ при различных схемах включения
Параметр | Схема | ||
---|---|---|---|
ОИ | ОЗ | ОС | |
Rвх | Единицы МОм | Единицы, десятки Ом | Единицы МОм |
Rвых | Единицы кОм | Единицы кОм | Единицы, десятки Ом |
KU | >>1 | >>1 | <1 |
KI | — | ≅1 | — |
2.12. Временные характеристики усилительных каскадов
2.12.1. Метод анализа импульсных искажений
Рассмотренные усилительные каскады могут быть использованы для усиления импульсных сигналов. Для оценки искажений формы усиливаемых импульсных сигналов необходимо рассмотреть переходные процессы в усилительных каскадах. При анализе переходных процессов будем считать каскады линейными, т.е. амплитуда сигналов в них существенно меньше постоянных составляющих токов и напряжений в рабочей точке. В этом случае наиболее удобным методом анализа является преобразование Лапласа (операторный метод).
Временной процесс в электрической цепи описывается системой интегро-дифференциальных уравнений (СИДУ). Применяя прямое преобразование Лапласа (ППЛ), приводят СИДУ к системе линейных алгебраических уравнений (СЛАУ), которая просто решается относительно некоторой промежуточной функции, по которой с помощью обратного преобразования Лапласа (ОПЛ) находится решение для исходной СИДУ.
ППЛ функции вещественного переменного f(t) ("оригинала") служит для нахождения преобразованной функции f(p) ("изображения") и определяется соотношением:
ОПЛ определяется формулой:
где p = α + jω.
Практически "оригинал" f(t) находят по изображению f(p) с помощью таблиц [6], три примера приведены в таблице 2.3.
Таблица 2.3
Обратное преобразование Лапласа
f(p) | f(t) | Вид f(t) |
---|---|---|
1 | ||
e– bt |