Математика от А до Я: Справочное пособие (издание третье с дополнениями)
Шрифт:
Токсичные выбросы, возникающие из проливов жидкостей первой категории в атмосфере, представляют собой паровые клубы или облака и рассчитываются по известным [8,46,39,73] методикам.
При проливах жидкостей второй категории в случае мгновенного испарения можно получить некоторые характеристики атмосферного выброса, если предположить, что возникший парообразный объем состоит только из вещества пролива, а воздух в него не вовлекся [1]. Считается, что испаряющийся пар движется со звуковой скоростью от мгновенно испаряющейся жидкости пролива.
На практике возникший выброс будет состоять из смеси токсиканта и воздуха, кроме того, звуковая скорость не будет достигнута, и жидкость превратится в смесь пара, газа, пены и воздуха, а выбрасываемые капли при бурном процессе распада
Если выброс разлития состоит из невзрывоопасного и непожароопасного вещества (жидкости третьей категории), то на месте пролива возникает локальный ареал загрязнений («лужа»). Ее конфигурация и площадь определяются теплофизическими свойствами вещества (вязкость, температура, теплота испарения), а также рельефом местности и метеоусловиями (наличие ветра, температура атмосферы, влажность и т. п.).
Токсичное воздействие такого выброса локализовано в пределах площади пролива и при условии своевременного сбора и нейтрализации загрязнений приводит к минимальному ущербу для природных сред. При большой площади разлития и определенных атмосферных условиях вещество пролива интенсивно испаряется, что может привести к токсичным туманам и выпадениям токсичных дождей.
Испарение определяется [127] как процесс перехода вещества из твердого или жидкого состояния в пар. В случае перехода из твердого состояния непосредственно в парообразное этот процесс чаще называют сублимацией. Термин испарение обычно означает все процессы парообразования, за исключением особо оговоренных случаев (например, испарение воды через ткани живых растений называют транспирацией).
Интенсивность испарения Е, по результатам исследований Дальтона [123], а затем Солднера [124], может быть описана формулами:
Здесь
Еb — интенсивность испарения при точке кипения в сухом воздухе при атмосферном давлении Р (т. е. при давлении насыщенного пара при температуре точки кипения);
I*s — давление насыщенного водяного пара при температуре водной поверхности;
Iа — давление пара в воздухе.
Связь давления насыщенного водяного пара с температурой описывается формулой:
I* = Р— ехр[-(250+ Тb — Т)— (Тb — Т)/ 6976],
где Тb — температура кипения при атмосферном давлении Р
Дальнейшим развитием и углублением проблемы были работы Вайленмана [125]. Он выразил интенсивность испарения в виде линейной функции от средней скорости ветра и и дефицита насыщенного воздуха:
В этой формуле:
Aw и Bw — постоянные, /*а — давление насыщенного пара при температуре воздуха.
Соотношения (2.56) и (2.55а) эквивалентны лишь при равенстве температуры воздуха и воды.
Наконец, Штеллинг [126], объединяя уравнение Дальтона (2.55) и уравнение Вайленмана (2.56), получил уравнение, корректно решающее проблему
Здесь
As и Bs — эмпирические
постоянные.Отмечается [127], что уравнение (2.57) получено эмпирическим путем, и в литературе опубликовано бесчисленное множество значений As и Bs, пригодных для разных условий. Однако эта формула не решала проблему в целом.
Дальнейшее развитие теории испарения произошло при изучении явлений переноса в газах и жидкостях. Фик [128] опытным путем обнаружил, что локальный удельный поток субстанции примеси в невозмущенной сплошной среде, являющийся результатом только молекулярного переноса, пропорционален градиенту ее концентрации. Современное развитие теория испарения получила в работах Брат-серта [121], Берлянда М.Е. [129], Будыко М.И. [130].
Для горючих и взрывающихся веществ проливов ситуация может усложниться потенциальной опасностью развития аварийной ситуации. При загорании разлития, испаряющегося с поверхности жидкости, возникает пожар разлития, характеризующийся параметрами, описываемыми в предыдущем разделе. Это относится и к нахождению физических характеристик загоревшегося парового клуба, возникшего от испарившегося пролива.
Дымления и пыления являются важными источниками поступления токсичных веществ в атмосферу в виде частиц в широком диапазоне размеров: от нескольких миллиметров до долей микрона. Аэрозольные частицы пыли и дыма в концентрациях выше предельно допустимых (ПДК) являются сильными токсикантами; кроме того, они служат центрами конденсации атмосферной влаги, приводя к образованию токсичных туманов и смогов. Естественные и антропогенные туманы, а также фотохимические смоги состоят из конденсирующихся аэрозолей, токсичность которых повышена по сравнению с сухими аналогами. Они под действием метеорологических факторов могут перемещаться на значительные расстояния.
Дымлением называется процесс образования разбавляемого воздухом объема мельчайших аэрозольных частиц в результате химических реакций неполного сгорания вещества выброса. Происходит дымление, как правило, при недостатке окислителя.
Процесс дымления на практике либо предшествует горению, либо следует после него. Выброс дымления, как и испарительный выброс, имеет нулевую начальную скорость выхода вещества и отличный от нуля начальный расход вещества.
При дымлении наряду с аэрозольными частицами, как правило, присутствуют жидкости в парообразном состоянии. Недоокисление топлива при дымлении дает химические соединения, обладающие высокой токсичностью (например, диоксин). Поэтому дымление, несмотря на его сравнительно малый вклад по времени в общий процесс горения, может дать высокие значения концентраций и доз загрязняющих и токсичных веществ в окрестности места возникновения этого выброса. Размер дымовых частиц — от 0,005 мкм до 0,5 мкм.
Пылевые частицы, определяемые как дисперсные аэрозоли [63,64], в основной своей массе имеют большие размеры. Многие процессы в промышленности, например, размол, дробление, просеивание, измельчение, шлифовка сопровождаются выделением в воздух пылевых частиц. Они также часто образуются при химических или термических процессах плавления твердых веществ, возгонке, обжиге.
Частицы пыли, находясь в воздухе рабочих помещений во взвешенном состоянии, могут попасть в организм через органы дыхания, желудочно-кишечный тракт. Они, попадая на слизистые оболочки глаз, могут вызвать конъюктивиты, заболевания кожи — различные дерматиты.
Вредное действие пыли на организм определяется ее химическим составом, размером частиц и их формой. Наибольшую опасность представляют мелкие частицы пыли размером до 5 микрон [63]. Такие частицы могут долго находиться во взвешенном состоянии и проникать глубоко в легкие. Вредное действие пыли зависит также от формы ее частиц. Наиболее вредными являются микродисперсные частицы пыли волокнистого или иглообразного строения, способные длительное время находиться в воздухе во взвешенном состоянии. Такие пылевые частицы, выделяющиеся в текстильной, асбестовой промышленности и в производствах стеклянного и минерального волокна, могут проникать глубоко в ткани легкого даже при размерах пылинок в 20–30 мкм.