Чтение онлайн

ЖАНРЫ

Современный квартирный сантехник, строитель и электрик
Шрифт:

3.3.3. Энергосберегающие осветительные приборы в квартире

Обычно в квартирах с длинными коридорами и на кухнях постоянно горит свет. В таких помещениях в первую очередь стоит заменить лампы накаливания на энергосберегающие. Эти лампы имеют гарантию, как минимум, один год. За это время они полностью окупятся и даже дадут экономию бюджета. Лампа мощностью в 14 Вт примерно соответствует обычной лампе накаливания мощностью 60 Вт.

Внимание, важно! К существенному снижению электропотребления приведет использование светлых обоев и потолков, прозрачных светлых штор, умеренного количества мебели и цветов в комнате. Никогда не надо пренебрегать естественным освещением.

3.3.4. Экономим на холодильнике

При

покупке новой бытовой техники, в частности холодильников, выбирайте приборы категории «А»; поскольку они еще на этапе проектирования разрабатываются как энергосберегающие.

Холодильник стоит устанавливать в самом затененном и прохладном месте квартиры.

При использовании пылесоса чаще выбрасывайте мусор из контейнера для его сбора, промывайте или меняйте фильтры для входящего и выходящего воздуха. Дополнительное аэродинамическое сопротивление приводит к перегреву двигателя пылесоса и резкому повышению потребления электроэнергии. Например, при заполнении контейнера для сбора пыли на 30 % энергопотребление возрастает на 40–50 %.

3.3.5. Экономия при отключении дежурного режима бытовой электроники

Мало кто задумывается, что дежурный режим бытовых приборов – это дырка в кармане, через которую «утекают» деньги.

Внимание, пример! Телевизор с диагональю 54 см «съедает» в дежурном режиме 9 кВт, музыкальный центр 8 кВт, видеоплеер 4 кВт и т. д. – по аналогии.

Посчитайте свои бытовые приборы, зачем им дежурный режим? Совсем не сложно, при необходимости, нажать кнопку вкл/откл еще раз. Есть еще один аспект в пользу энергосбережения: дорогие бытовые устройства постоянно подключены к электросети и при ее аварии вы можете лишиться всего, ибо часто ремонт совершенно нерентабелен (проще купить новое оборудование).

3.3.6. Экономия при отключении зарядных устройств сотовых телефонов

Конечно, потери от того, что эти устройства постоянно включены в розетку, не так велики, как от прочей бытовой техники. Однако «зарядники» являются импульсными источниками питания, такие устройства «не любят» работать без нагрузки. Когда к ним не подключен сотовый, плеер, ноутбук, такие приборы греются, выходят из строя и могут даже привести к пожару!

Внимание, совет! Если вы не пользуетесь компьютером, например, ушли на работу или на учебу, благоразумно отключить дорогостоящую технику. Этим вы продлите ресурс оборудования и снизите энергопотребление квартиры. Кроме того, уж точно никто не сможет украсть ваши данные и наработки в ваше отсутствие, ведь компьютер будет обесточен. Так можно легко сэкономить деньги, силы и нервы.

Это интересно!

Любому человеку, так или иначе разбирающемуся в законах физики, очевидно, что электрическая цепь должна составлять замкнутый контур, т. е. ток идет по двум проводам.

Однако, в соответствии с проведенными еще двадцать лет назад во Всесоюзном электротехническом институте инженером Станиславом Авраменко опытами, можно передавать электроэнергию по одному проводу (незамкнутому контуру).

Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений об электротехнике?

Электрическая схема опыта Авраменко состояла из резонансного трансформатора Теслы (назван по имени изобретателя Николы Теслы, первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки), единственного проводника линии электропередачи, двух встречно включенных полупроводниковых диодов, конденсатора и разрядника.

При подключении входных выводов резонансного трансформатора к источнику переменного напряжения в разряднике возникает искра – происходит пробой воздуха электрическими разрядами. Они могут быть как непрерывными, так и прерывающимися (напоминающими разряд электрошокера), повторяются с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения. На контактах разрядника периодически накапливается определенное число зарядов. Поступать туда они могут лишь через диоды, выпрямляющие переменный ток, существующий в линии. Таким образом, в опыте Авраменко циркулирует постоянный по роду и пульсирующий по величине и характеру ток.

Подключенный к разряднику вольтметр, при частоте

около 3 кГц и напряжении 60 В на входе трансформатора, перед пробоем (разрядника) показал напряжение более 10 кВ. Установленный вместо него амперметр регистрировал ток в несколько десятков микроампер (мкА).

Усложнив схему, экспериментаторы Московского электротехнического института 5 июля 1990 года передавали по линии ток, эквивалентный мощности 1,3 кВт. Источником питания служил машинный генератор с частотой 8 кГц. Длина вольфрамового провода линии передачи (диаметром 15 мкм) равнялась 2,75 м. Электрическое сопротивление такого провода намного превышало сопротивление обычных электрических проводов (из алюминия или меди) той же длины. Ученые до сих пор спорят: должны были происходить большие потери электроэнергии, а провод – раскалиться и излучать тепло. Но этого не произошло, пока трудно объяснить почему, – вольфрам оставался холодным. Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были ошеломлены (однако своих фамилий, на всякий случай, просили не указывать).

Это не просто экспериментаторские игрушки. Линия с одним проводом, по сути, не имела сопротивления электрическому току (имела сопротивление, близкое к нулю), и представляла собой «сверхпроводник» в условиях «комнатной» температуры. Практическое значение этих экспериментов (опробована передача электроэнергии по одному проводу на 160 м) трудно переоценить. Эффект связан с токами смещения и резонансными явлениями – совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника; вспомним, что о мгновенных токах в единичной линии писал еще Фарадей. В соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике «джоулева» тепла, т. е. проводник не оказывает ему сопротивления. К слову, Авраменко до сих пор не получил авторского свидетельства за столь оригинальное открытие.

3.4. Вопросы заземления бытовой техники

Надежное электропитание и заземление очень важны для работы бытовой техники, персональных компьютеров, локальных сетей, периферийных устройств, соединяемых различными кабелями (например, компьютер – принтер, телевизор – видеомагнитофон и в других случаях). Применение устройств защиты, в частности источников бесперебойного питания (UPS), эффективно только при наличии хорошего заземления.

Практическая реализация надежного заземления настолько актуальна (с точки зрения защиты, долговременной эксплуатации и техники безопасности), что имеет не меньшее значение, чем, скажем, жизнь и здоровье человека; эти понятия взаимосвязаны. Как надежно заземлить оборудование – поговорим далее.

3.4.1. Подключение заземления в одном электрическом контуре

Рассмотрим некоторые особенности подключения электрических устройств к осветительной сети 220 В с точки зрения безопасности, как человека, так и компьютера.

На рис. 3.39 представлена схема сетевого фильтра по питанию (ФП), применяемого практически в каждом источнике питания бытовых устройств различной сложности (телевизора, компьютера или периферийного устройства).

Рис. 3.39. Входные цепи (ФП) источника питания бытовой техники

Рис. 3.40. Образование потенциала на общем проводе электроприбора

Конденсаторы электрического фильтра предназначены для шунтирования высокочастотных помех осветительной сети на «землю» через провод защитного заземления и трехполюсные вилку (штекер) и розетку. Провод заземления соединяют с контуром заземления, его недопустимо соединять с «нулем» осветительной сети. При устройстве «зануления» необходима гарантия того, что нуль не станет фазой, если кто-нибудь «перевернет» штекер питания. Если же «землю» устройства никуда не подключать, на корпусе (общем проводе) устройства может появиться переменное напряжение 100 В (рис. 3.40): конденсаторы фильтра работают как емкостной делитель напряжения, и поскольку их емкость одинакова, напряжение 220 В делится пополам.

Поделиться с друзьями: