Чтение онлайн

ЖАНРЫ

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:

Но задержимся на мгновение. Не устроили ли мы тут игру в наперстки с двумя бесконечными рядами, один из которых сходится при аргументе s= 1/ 2, а другой — нет? Ну, строго говоря, мы действуем не совсем по правилам, и я обошелся довольно безответственно с той математикой, на которой здесь все основано. Однако же я получил правильный ответ, причем этот фокус можно повторить для любого числа между нулем и единицей (не включая ее) и получить правильное значение для (s).

VI.

За исключением одного только s = 1, где (s)не имеет значения, мы можем теперь предъявить значение дзета-функции для любого числа s, большего нуля. А как насчет аргументов равных нулю или меньших нуля? Вот здесь все по-настоящему круто. Один из результатов в работе Римана 1859 года состоит в доказательстве формулы, впервые предложенной Эйлером в 1749 году, которая выражает (1 – s)через (s).

Таким образом, если мы желаем узнать, например, значение (-15), то надо просто вычислить значение (16) и подставить его в эту формулу. Это, правда, неслабая формула, и я привожу ее главным образом для полноты картин: [75]

75

«Неслабая формула» на самом деле не столь уж и страшна. Если, конечно, вы не забыли математику из старших классов. За исключением дзета-функции, там нет ничего такого, чего бы не проходили, по крайней мере частично, в школе. Синус и факториал — это, как говорят математики, «элементарные» функции, так что выписанная формула «элементарно» связывает значение дзета-функции при аргументе 1 - sсо значением при аргументе s. Такая формула, кстати сказать, называется «функциональным уравнением».

Всюду здесь — это магическое число 3,14159265…, sin — добрая старая тригонометрическая функция синус (от аргумента, выраженного в радианах), а знак «!» обозначает факториальную функцию, упоминавшуюся уже в главе 8.iii. В математике, изучаемой в старших классах, вы встречались только с факториальной функцией, аргументами которой являются положительные целые числа: 2! = 1x2, 3! = 1x2x3, 4! = 1x2x3x4 и т.д. В высшей математике, однако, есть способ определить факториальную функцию для всех чисел, кроме отрицательных целых, для чего применяется прием расширения области определения вполне в духе того, которым мы только что пользовались. Например, ( 1/ 2)! оказывается равным 0,8862269254… (на самом деле — половине квадратного корня из ), (- 1/ 4)! = 1,2254167024… и т.д. Отрицательные целые создают проблемы в этой формуле, но это не критические проблемы, и я ничего о них говорить не буду. На рисунке 9.11 изображена полная факториальная функция для аргументов от -4 до 4.

Рисунок 9.11.Полная факториальная функция x!.

Если вам кажется, что все это немного чересчур, то просто примите на веру, что имеется способ получить значение функции (s)для любого числа sза единственным исключением s = 1. Даже если ваш взгляд никак не сфокусируется на приведенной выше формуле, то заметьте по крайней мере вот что: она выражает (1 – s)через (s); если вы знаете, как посчитать (16), то вы можете тогда вычислить (-15); если вам известна (4), то вы можете вычислить (-3); если вам известна (1,2), то вы можете выделить (-0,2); если вам известна (0,6), то вы можете вычислить (0,4); если вам известна (0,50001), то вы можете вычислить (0,49999), и т.д. Вопрос, к которому я подбираюсь, — это что аргумент «одна вторая» имеет особый статус в приведенном соотношении между (1 – s)и (s), потому что если s = 1/ 2, то 1 - s = s. Очевидно — я хочу сказать, очевидно из рисунка 5.4 и рисунков с 9.3 по 9.10, — что дзета-функция не симметрична относительно аргумента 1/ 2. И тем не менее ее значения при аргументах слева от 1/ 2связаны с их зеркальными образами справа весьма тесным, хотя и не самым простым образом.

Снова посмотрев на набор графиков, можно заметить кое-что еще: (s)равна нулю всегда, когда s— отрицательное четное число. А если при каком-то аргументе значение функции равно нулю, то этот аргумент называется нулем данной функции. Итак, верно следующее:

2, 4, 6 и все остальные отрицательные четные целые числа являются нулями дзета-функции.

А взглянув на утверждение Гипотезы Римана, мы увидим, что в ней говорится про «все нетривиальные нули дзета-функции». Неужели мы у цели? Увы, нет: отрицательные четные числа и в самом деле нули дзета-функции, но все они до единого — тривиальные нули. Чтобы добраться до нетривиальных нулей, нам надо нырнуть поглубже.

VII.

В качестве добавления к этой главе еще чуть разовьем наш анализ, применив к выражению (9.2) два результата из тех, что были сформулированы в главе 7. Выпишем это выражение снова:

1/(1 - x) = 1 + x+ x 2+ x 3+ x 4+ x 5+ x 6+ …

Все,

что я собираюсь сделать, — это проинтегрировать обе части. Поскольку интеграл от 1/ xравен ln x, я надеюсь, что не слишком злоупотреблю вашим доверием, если скажу (не останавливаясь на доказательстве), что интеграл от 1/(1 - x) равен -ln(1 - x). С правой частью равенства все еще проще. Можно просто интегрировать один член за другим, используя правила интегрирования степеней, сформулированные в таблице 7.2 . Результат (впервые полученный сэром Исааком Ньютоном) имеет вид:

– ln(1 - x) = x+ x 2/2 + x 3/3 + x 4/4 + x 5/5 + x 6/6 +….

Будет чуть удобнее, если обе части умножить на -1:

ln(1 - x) = - xx 2/2 - x 3/3 - x 4/4 - x 5/5 - x 6/6 - … (9.3)

Несколько странно, хотя для наших целей и несущественно, что выражение (9.3) верно при x = -1, тогда как выражение (9.2) , с которого мы начали, при этом неверно. Действительно, при x= -1 выражение (9.3) дает следующий результат:

ln 2 = 1 - 1/ 2+ 1/ 31/ 4+ 1/ 51/ 6+ 1/ 7– … (9.4)

Отметим сходство с гармоническим рядом. Гармонический ряд… простые числа… дзета-функция…. Во всей этой области господствует логарифмическая функция.

Правая часть выражения (9.4) несколько своеобразна, хотя этого и не заметить невооруженным взглядом. Она в действительности является стандартной (из учебников) иллюстрацией того, насколько хитрой вещью являются бесконечные ряды. Этот ряд сходится к ln 2, что составляет 0,6931471805599453…, но только если складывать члены именно в этом порядке.Если складывать в другом порядке, ряд может сойтись к чему-нибудь другому — или может даже вообще не сойтись! [76]

76

К слову, этот факт был впервые доказан Бернхардом Риманом.

Рассмотрим, например, такую перестановку членов ряда: 1 - 1/ 21/ 4+ 1/ 31/ 61/ 8+ 1/ 51/ 10– …. То же самое, но с расставленными скобками: (1 - 1/ 2) - 1/ 4+ ( 1/ 31/ 6) - 1/ 8+ ( 1/ 51/ 10) - …, т.е. 1/ 2(1 - 1/ 2+ 1/ 31/ 4+ 1/ 5– …). Сумма ряда с переставленными членами равна половине сумм исходного ряда! [77]

77

Чтобы суммировать ряд к другому значению, необходимо переставить бесконечное число слагаемых; в отношении конечных сумм, разумеется, верен закон перестановочности для сложения. (Примеч. перев.)

Поделиться с друзьями: