Схемотехника аналоговых электронных устройств
Шрифт:
Uвх = Eг·νвх,
где νвх — коэффициент передачи входной цепи УУ.
По аналогии с K0ОС можно записать:
KE ОС = KE/(1 + βK0) = νвхK0/(1 + βK0).
При глубокой ∥ООСН (βK0 >> 1)
KE ОС ≈ νвх/β.
Входное сопротивление усилителя с ∥ООСН определится как:
RвхОС = Rвх/FI,
где глубина ООС по току FI=1+βIKI, βI=Iос/Iвых.
Величину выходного сопротивления УУ, охваченного ∥ООСН, можно приближенно оценить по уже известному соотношению:
RвыхОС ≈ Rвых/F.
Из изложенного следует, что ∥ООСН стабилизирует сквозной коэффициент усиления по напряжению при постоянном сопротивлении источника сигнала, уменьшает входное и выходное сопротивления усилителя.
Каскад на БТ с ОЭ и ∥ООСН представлен на рисунке 3.5.
Рисунок 3.5. Усилительный каскад на БТ с ОЭ и ∥ООСН
При ∥ООСН выходное напряжение каскада вызывает ток ОС, протекающий через цепь ОС RосLосCрос. Ранее (см. подраздел 2.6) рассматривалась схема коллекторной термостабилизации, работа которой основана на действии ∥ООСН. В данном же каскаде ∥ООСН действует только на частотах сигнала, что отражено на рисунке 3.5б.
Воспользовавшись рекомендациями подраздела 2.3, получим выражения для основных параметров в области СЧ. Для коэффициента усиления по напряжению получим:
т.к. S0Rос>>1, Rэкв=Rк∥Rн. В большинстве случаев Rос>Rэкв, поэтому K0 меняется незначительно. Само же изменение K0 объясняется тем, что, в отличие от классической структуры УУ с ∥ООСН, в реальной схеме каскада нет столь четкого разделения цепи ОС и цепи прямого усиления.
Входное сопротивление каскада с ∥ООСН равно:
Обычно K0>>g(Rос+Rэкв), Rос>Rэкв и K0>>1, тогда
Выходное сопротивление каскада
с ∥ООСН равно:т.к. как правило S0>>g и S0Rг>>1.
Для определения параметров каскада в области ВЧ следует воспользоваться соотношениями для каскада с ОЭ (см. подраздел 2.5), принимая во внимание, что при расчете постоянной времени каскада τв следует учитывать выходное сопротивление каскада с ∥ООСН, т.е. Rэкв=Rвых∥Rн и влияние ∥ООСН на крутизну — S0ОС=S0–1/Rос.
Следует заметить, что существует возможность коррекции АЧХ (ПХ) в области ВЧ (МВ) путем включения последовательно с Rос корректирующей индуктивности Lос. Эффект коррекции объясняется уменьшением глубины ООС в области ВЧ (МВ). Расчет каскада с ОЭ и ∥ООСН в области НЧ ничем не отличается от расчета каскада без ОС (следует только учитывать изменение Rвх и Rвых при расчете постоянных времени разделительных цепей), исключение составляет расчет разделительной емкости Cрос из условия XCрос≤Rос/(10…20).
Следует заметить, что существует возможность коррекции АЧХ (ПХ) в области НЧ (БВ) путем уменьшения емкости Cрос. Эффект коррекции объясняется уменьшением глубины ООС в области НЧ (БВ).
Механизм действия ∥ООСН в каскаде на ПТ с ОИ (схема не приводится ввиду совпадения ее топологии рисунку 3.5) во многом идентичен только что рассмотренному. Приведем расчетные соотношения для основных параметров каскада на ПТ с ∥ООСН:
т.к. S0Rос>>1, Rэкв=Rс∥Rн.
Как правило, Rос>Rэкв и K0>>1, тогда
т.к. чаще всего S0Rг>>1.
Все вышесказанное о влиянии ∥ООСН на АЧХ (ПХ) каскада на БТ справедливо и для каскада на ПТ.
∥ООСН обычно применяют тогда, когда требуется понизить входное сопротивление каскада, что необходимо во входных каскадах УУ, работающих в низкоомном согласованном тракте передачи.
3.5. Параллельная ООС по току
На рисунке 3.6 приведена схема двухкаскадного усилителя, охваченного общей параллельной ООС по току (∥ООСТ), которая вводится в усилитель путем включения резистора Rос.